References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Newtonian Spaces Based on Quasi-Banach Function LatticesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2012. , 9 p.
##### Series

Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1543
##### Keyword [en]

Newtonian space, upper gradient, weak upper gradient, Banach function lattice, quasi-normed space, metric measure space
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:liu:diva-79166ISBN: 978-91-7519-839-2OAI: oai:DiVA.org:liu-79166DiVA: diva2:538662
##### Presentation

2012-09-18, Alan Turing, E-huset, Campus Valla, Linköping University, Linköping, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt393",{id:"formSmash:j_idt393",widgetVar:"widget_formSmash_j_idt393",multiple:true});
Available from: 2012-08-13 Created: 2012-07-01 Last updated: 2016-05-04Bibliographically approved
##### List of papers

The traditional first-order analysis in Euclidean spaces relies on the Sobolev spaces W^{1,p}(Ω), where Ω ⊂ R^{n} is open and p ∈ [1, ∞].The Sobolev norm is then defined as the sum of Lp norms of a function and its distributional gradient.We generalize the notion of Sobolev spaces in two different ways. First, the underlying function norm will be replaced by the “norm” of a quasi-Banach function lattice. Second, we will investigate functions defined on an abstract metric measure space and that is why the distributional gradients need to be substituted.

The thesis consists of two papers. The first one builds up the elementary theory of Newtonian spaces based on quasi-Banach function lattices. These lattices are complete linear spaces of measurable functions with a topology given by a quasinorm satisfying the lattice property. Newtonian spaces are first-order Sobolev-type spaces on abstract metric measure spaces, where the role of weak derivatives is passed on to upper gradients. Tools such asmoduli of curve families and the Sobolev capacity are developed, which allows us to study basic properties of the Newtonian functions.We will see that Newtonian spaces can be equivalently defined using the notion of weak upper gradients, which increases the number of techniques available to study these spaces. The absolute continuity of Newtonian functions along curves and the completeness of Newtonian spaces in this general setting are also established.

The second paper in the thesis then continues with investigation of properties of Newtonian spaces based on quasi-Banach function lattices. The set of all weak upper gradients of a Newtonian function is of particular interest.We will prove that minimalweak upper gradients exist in this general setting.Assuming that Lebesgue’s differentiation theoremholds for the underlyingmetricmeasure space,wewill find a family of representation formulae. Furthermore, the connection between pointwise convergence of a sequence of Newtonian functions and its convergence in norm is studied.

1. Newtonian spaces based on quasi-Banach function lattices$(function(){PrimeFaces.cw("OverlayPanel","overlay538660",{id:"formSmash:j_idt429:0:j_idt433",widgetVar:"overlay538660",target:"formSmash:j_idt429:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Minimal weak upper gradients in Newtonian spaces based on quasi-Banach function lattices$(function(){PrimeFaces.cw("OverlayPanel","overlay538661",{id:"formSmash:j_idt429:1:j_idt433",widgetVar:"overlay538661",target:"formSmash:j_idt429:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1101",{id:"formSmash:lower:j_idt1101",widgetVar:"widget_formSmash_lower_j_idt1101",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1102_j_idt1104",{id:"formSmash:lower:j_idt1102:j_idt1104",widgetVar:"widget_formSmash_lower_j_idt1102_j_idt1104",target:"formSmash:lower:j_idt1102:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});