Change search
ReferencesLink to record
Permanent link

Direct link
A Framework for discovering Interesting Rules from Event Sequences with the purpose of pre-warning Oil Production Problems
Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Computer and Information Science.
2007 (English)MasteroppgaveStudent thesis
Abstract [en]

Periods of sub-optimal production rates, or complete shut-downs, add negative numbers to the revenue graph for oil companies. Oil and gas are produced from several reservoirs and through many wells with varying gas/oil proportion, making it a complex process that is difficult to control. As a part of a three step process for utilizing data in the oil production domain, this thesis derive methods for discovering event patterns, called restricted association rules, from time series in order to pre-warn about future problems in oil production processes. A restricted rule syntax and semantics is derived to explicitly target rules suited for prediction. Based on the defined rule syntax, a two step process is derived where restricted rule mining based on the concept of minimal occurrences is used to discover restricted association rules from a sequence of events. Next, redundant rules are removed based on the concept of minimum improvement and chaining of rules, during a rule selection phase. Information theory is applied in order to identify the most interesting rules, which can be submitted to an expert for validation. Both a simple solution for easy implementation in ConocoPhillips and a more advanced solution appropriate for general prediction cases are derived. This thesis concludes that it is feasible to discover dependencies between events from actual process data. It is also concluded that a large number of rules can be pruned, in order to get a manageable set of rules which is believed to have good predictive performance.

Place, publisher, year, edition, pages
Institutt for datateknikk og informasjonsvitenskap , 2007. , 72 p.
Keyword [no]
ntnudaim:3737, MTDT datateknikk, Intelligente systemer
URN: urn:nbn:no:ntnu:diva-16748Local ID: ntnudaim:3737OAI: diva2:536426
Available from: 2012-06-21 Created: 2012-06-21

Open Access in DiVA

fulltext(1158 kB)188 downloads
File information
File name FULLTEXT01.pdfFile size 1158 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(48 kB)32 downloads
File information
File name COVER01.pdfFile size 48 kBChecksum SHA-512
Type coverMimetype application/pdf

By organisation
Department of Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 188 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 45 hits
ReferencesLink to record
Permanent link

Direct link