CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Estimation in Multivariate Linear Models with Linearly Structured Covariance MatricesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2012. , p. 25
##### Series

Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1531
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-78845Local ID: LIU-TEK-LIC-2012:16ISBN: 978-91-7519-886-6 (print)OAI: oai:DiVA.org:liu-78845DiVA, id: diva2:536195
##### Presentation

2012-06-08, BL32 (Nobel), hus B, Campus Valla, Linköpings universitet, Linköping, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt494",{id:"formSmash:j_idt494",widgetVar:"widget_formSmash_j_idt494",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt501",{id:"formSmash:j_idt501",widgetVar:"widget_formSmash_j_idt501",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt509",{id:"formSmash:j_idt509",widgetVar:"widget_formSmash_j_idt509",multiple:true}); Available from: 2012-06-21 Created: 2012-06-21 Last updated: 2014-09-29Bibliographically approved
##### List of papers

This thesis focuses on the problem of estimating parameters in multivariate linear models where particularly the mean has a bilinear structure and the covariance matrix has a linear structure. Most of techniques in statistical modeling rely on the assumption that data were generated from the normal distribution. Whereas real data may not be exactly normal, the normal distributions serve as a useful approximation to the true distribution. The modeling of normally distributed data relies heavily on the estimation of the mean and the covariance matrix. The interest of considering various structures for the covariance matrices in different statistical models is partly driven by the idea that altering the covariance structure of a parametric model alters the variances of the model’s estimated mean parameters.

The extended growth curve model with two terms and a linearly structured covariance matrix is considered. In general there is no problem to estimate the covariance matrix when it is completely unknown. However, problems arise when one has to take into account that there exists a structure generated by a few number of parameters. An estimation procedure that handles linear structured covariance matrices is proposed. The idea is first to estimate the covariance matrix when it should be used to define an inner product in a regression space and thereafter reestimate it when it should be interpreted as a dispersion matrix. This idea is exploited by decomposing the residual space, the orthogonal complement to the design space, into three orthogonal subspaces. Studying residuals obtained from projections of observations on these subspaces yields explicit consistent estimators of the covariance matrix. An explicit consistent estimator of the mean is also proposed and numerical examples are given.

The models based on normally distributed random matrix are also studied in this thesis. For these models, the dispersion matrix has the so called Kronecker product structure and they can be used for example to model data with spatio-temporal relationships. The aim is to estimate the parameters of the model when, in addition, one covariance matrix is assumed to be linearly structured. On the basis of *n* independent observations from a matrix normal distribution, estimation equations in a flip-flop relation are presented and numerical examples are given.

1. Estimation of parameters in the extended growth curve model with a linearly structured covariance matrix$(function(){PrimeFaces.cw("OverlayPanel","overlay469199",{id:"formSmash:j_idt563:0:j_idt567",widgetVar:"overlay469199",target:"formSmash:j_idt563:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Estimation in multivariate linear models with Kronecker product and linear structures on the covariance matrices$(function(){PrimeFaces.cw("OverlayPanel","overlay536189",{id:"formSmash:j_idt563:1:j_idt567",widgetVar:"overlay536189",target:"formSmash:j_idt563:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1709",{id:"formSmash:j_idt1709",widgetVar:"widget_formSmash_j_idt1709",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1780",{id:"formSmash:lower:j_idt1780",widgetVar:"widget_formSmash_lower_j_idt1780",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1783_j_idt1785",{id:"formSmash:lower:j_idt1783:j_idt1785",widgetVar:"widget_formSmash_lower_j_idt1783_j_idt1785",target:"formSmash:lower:j_idt1783:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});