CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt166",{id:"formSmash:upper:j_idt166",widgetVar:"widget_formSmash_upper_j_idt166",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt167_j_idt169",{id:"formSmash:upper:j_idt167:j_idt169",widgetVar:"widget_formSmash_upper_j_idt167_j_idt169",target:"formSmash:upper:j_idt167:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the Short-Time Fourier Transform and Gabor Frames generated by B-splinesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. , 16 p.
##### Keyword [en]

short-time Fourier transform, time-frequency analysis, Gabor frames, B-splines
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:lnu:diva-20262OAI: oai:DiVA.org:lnu-20262DiVA: diva2:535693
##### Subject / course

Mathematics
##### Uppsok

Physics, Chemistry, Mathematics

#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt470",{id:"formSmash:j_idt470",widgetVar:"widget_formSmash_j_idt470",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt476",{id:"formSmash:j_idt476",widgetVar:"widget_formSmash_j_idt476",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt483",{id:"formSmash:j_idt483",widgetVar:"widget_formSmash_j_idt483",multiple:true});
Available from: 2012-06-20 Created: 2012-06-20 Last updated: 2017-01-11Bibliographically approved

In this thesis we study the short-time Fourier transform. The short-time Fourier transform of a function f(x) is obtained by restricting our function to a short time segment and take the Fourier transform of this restriction. This method gives information locally of f in both time and frequency simultaneously.To get a smooth frequency localization one wants to use a smooth window, whichmeans that the windows will overlap.

The continuous short-time Fourier transform is not appropriate for practical purpose, therefore we want a discrete representation of f. Using Gabor theory, we can write a function f as a linear combination of time- and frequency shifts of a fixed window function g with integer parameters a; b > 0. We show that if the window function g has compact support, then g generates a Gabor frame G(g; a; b). We also show that for such a g there exists a dual frame such that both G(g; a; b) and its dual frame has compact support and decay fast in the Fourier domain. Based on [2], we show that B-splines generates a pair of Gabor frames.

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1207",{id:"formSmash:j_idt1207",widgetVar:"widget_formSmash_j_idt1207",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1260",{id:"formSmash:lower:j_idt1260",widgetVar:"widget_formSmash_lower_j_idt1260",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1261_j_idt1263",{id:"formSmash:lower:j_idt1261:j_idt1263",widgetVar:"widget_formSmash_lower_j_idt1261_j_idt1263",target:"formSmash:lower:j_idt1261:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});