Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Some Properties of Infinite Series
Karlstad University, Faculty of Technology and Science, Department of Mathematics.
2012 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Några egenskaper hos oändliga serier (Swedish)
Abstract [en]

The subject of infinite series and the properties thereof are explored, showing the theorems of Bernhard Riemann, Augustin Louis Cauchy, Otto Toeplitz, Franz Mertens and Niels Henrik Abel, among others and also several standard and nonstandard examples and problems where these theorems are useful.

Abstract [sv]

Oändliga serier och deras egenskaper utforskas med hjälp av satser av bland andra Bernhard Riemann, Augustin Louis Cauchy, Otto Toeplitz, Franz Mertens och Niels Henrik Abel. Flertalet exempel och problem där dessa satser är användbara presenteras och löses.

Place, publisher, year, edition, pages
2012. , 55 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kau:diva-13790Local ID: MAT C-8OAI: oai:DiVA.org:kau-13790DiVA: diva2:535147
Subject / course
Mathematics
Uppsok
Physics, Chemistry, Mathematics
Supervisors
Examiners
Available from: 2012-07-09 Created: 2012-06-19 Last updated: 2012-07-09Bibliographically approved

Open Access in DiVA

Some Properties of Infinite Series(494 kB)8083 downloads
File information
File name FULLTEXT01.pdfFile size 494 kBChecksum SHA-512
189b17f516a0487c1d6dad4dadf15fb4dfcbb4e8b927cb6a5d55f9fd8d217456fe98e28bf966c5e27678354c6c765441c3b38530ad5338fcb5b1562486116a0e
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Flygare, Mattias
By organisation
Department of Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 8087 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 223 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf