Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of ionization degree on film properties when using high power impulse magnetron sputtering
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics.
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-2864-9509
Uppsala University, Sweden.
Show others and affiliations
2012 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 30, no 3, 031507- p.Article in journal (Refereed) Published
Abstract [en]

Chromium thin films are deposited by combining direct current magnetron sputtering and high power impulse magnetron sputtering (HiPIMS) on a single cathode in an industrial deposition system. While maintaining a constant deposition rate and unchanged metal ion energy distribution function, the fraction of the total power supplied by either deposition technique is altered, and thereby also the metal ion to metal neutral ratio of the deposition flux. It is observed that the required total average power needed to be proportionally increased as the HiPIMS fraction is increased to be able to keep a constant deposition rate. The influence on microstructure, electrical, and electrochemical properties of the films is investigated and shows improvements with the use of HiPIMS. However, considerable influence of the studied properties occurs already when only some 40% of the total power is supplied by the HiPIMS technique. Further increase of the HiPIMS power fraction results in comparatively minor influence of the studied properties yet significant deposition rate efficiency reduction. The results show that the degree of ionization can be controlled separately, and that the advantages associated with using HiPIMS can be obtained while much of the deposition rate reduction, often reported for HiPIMS, can be avoided.

Place, publisher, year, edition, pages
American Vacuum Society , 2012. Vol. 30, no 3, 031507- p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-78582DOI: 10.1116/1.3700227ISI: 000303602800018OAI: oai:DiVA.org:liu-78582DiVA: diva2:534148
Note

Funding Agencies|Swedish Research Council (VR)|621-2005-3245621-2008-3222623-2009-7348|Swedish Foundation for Strategic Research||

Available from: 2012-06-15 Created: 2012-06-15 Last updated: 2017-12-07
In thesis
1. Fundamental aspects of HiPIMS under industrial conditions
Open this publication in new window or tab >>Fundamental aspects of HiPIMS under industrial conditions
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fundamental aspects of the high power impulse magnetron sputtering (HiPIMS) process and its implication for film growth under industrial conditions have been studied. The emerging HiPIMS technique exhibits a higher plasma density and an enhanced degree of ionisation of sputtered material as compared to conventional direct current magnetron sputtering (DCMS). The increased ionisation permits control of the deposition flux and facilitates an intense ion bombardment of the growing films. The latter allows for growth of well adherent, smooth, and dense thin films. Moreover, the technique offers increased stability of reactive processes, control of film phase constitution as well as tailoring of e.g. optical and mechanical properties.

In the present work, it was shown, for eight different metals (Al, Ti, Cr, Cu, Zr, Ag, Ta, and Pt), that films grown using HiPIMS exhibit a 5-15% higher density than films grown using DCMS under otherwise identical conditions. Through simulations of the fundamental ionisation processes in the plasma discharge, a correlation between high ionisation degree and film densification was established. The densification was suggested to be a consequence of increased ion irradiation of the growing films in the HiPIMS case. This knowledge was used to investigate the degree of ionisation in the deposition flux required for film modifications. Using a hybrid process, where DCMS and HiPIMS were combined on a single Cr cathode, independent control of the degree of ionisation from other experimental parameters was achieved. The results showed that the majority of the ion irradiation induced modifications of surface related film properties occurred when ~40% of the total average power was supplied by the HiPIMS generator. Under such conditions, the power normalised deposition rate was found to be ~80% of that of DCMS. This was attributed to a reduction in back-attracted ionised sputtered material, which is considered to be the main reason for the low deposition rate of HiPIMS. Thus, enhanced film properties were attainable largely without sacrificing deposition rate.

Compound carbide and boride films were synthesised using both reactive processes and compound sources. Reactive deposition of TiC/a-C:H thin films using C2H2 as reactive gas, i.e. carbon source, was demonstrated. It was found that the high plasma density processes (i.e. HiPIMS) facilitated growth conditions for the film structure formation closer to thermodynamic equilibrium than did processes exhibiting lower plasma densities (i.e. DCMS). This was manifested in a high stoichiometry of the carbide phase, whilst excess a-C was removed by physical sputtering. Moreover, the feasibility of using HiPIMS for thin film growth from a compound source, obtaining the same composition in the films as the sputtering source, was demonstrated through synthesis of ZrB2 films.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 52 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1461
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-79306 (URN)978-91-7519-856-9 (ISBN)
Public defence
2012-08-16, Planck, Fysikhuset, Campus Valla, Linköpings univeristet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-07-09 Created: 2012-07-09 Last updated: 2013-10-30Bibliographically approved

Open Access in DiVA

fulltext(580 kB)22449 downloads
File information
File name FULLTEXT01.pdfFile size 580 kBChecksum SHA-512
2e9a258747261c6b28cb9d539c5f3193e891ec9ccb01b4507e28921ff2d0b212a9679402b4f823eaf345f7ea3d51e58ce7f66d65bbf444a2b9f30384a677ab0f
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Samuelsson, MattiasLundin, DanielSarakinos, KostasHelmersson, Ulf
By organisation
The Institute of TechnologyPlasma and Coating Physics
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 22449 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 176 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf