Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Dispanins: A Novel Gene Family of Ancient Origin That Contains 14 Human Members
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
2012 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 2, e31961- p.Article in journal (Refereed) Published
Abstract [en]

The Interferon induced transmembrane proteins (IFITM) are a family of transmembrane proteins that is known to inhibit cell invasion of viruses such as HIV-1 and influenza. We show that the IFITM genes are a subfamily in a larger family of transmembrane (TM) proteins that we call Dispanins, which refers to a common 2TM structure. We mined the Dispanins in 36 eukaryotic species, covering all major eukaryotic groups, and investigated their evolutionary history using Bayesian and maximum likelihood approaches to infer a phylogenetic tree. We identified ten human genes that together with the known IFITM genes form the Dispanin family. We show that the Dispanins first emerged in eukaryotes in a common ancestor of choanoflagellates and metazoa, and that the family later expanded in vertebrates where it forms four subfamilies (A-D). Interestingly, we also find that the family is found in several different phyla of bacteria and propose that it was horizontally transferred to eukaryotes from bacteria in the common ancestor of choanoflagellates and metazoa. The bacterial and eukaryotic sequences have a considerably conserved protein structure. In conclusion, we introduce a novel family, the Dispanins, together with a nomenclature based on the evolutionary origin.

Place, publisher, year, edition, pages
2012. Vol. 7, no 2, e31961- p.
National Category
Pharmacology and Toxicology
Identifiers
URN: urn:nbn:se:uu:diva-174788DOI: 10.1371/journal.pone.0031961ISI: 000302871500098OAI: oai:DiVA.org:uu-174788DiVA: diva2:529056
Available from: 2012-05-29 Created: 2012-05-28 Last updated: 2017-12-07Bibliographically approved
In thesis
1. The Membrane Proteome: Evolution, Characteristics and Classification
Open this publication in new window or tab >>The Membrane Proteome: Evolution, Characteristics and Classification
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Membrane proteins are found in all kingdoms of life and are essential for cellular interactions with the environment. Although a large research effort have been put into this group many membrane proteins remains uncharacterized, both in terms of function and evolutionary history. We have estimated the component of α-helical membrane proteins within the human proteome; the membrane proteome. We found that the human membrane proteome make up 27% of all protein, which we could classify the majority of into 234 families and further into three major functional groups: receptors, transporters or enzymes. We extended this analysis by determining the membrane proteome of 24 organisms that covers all major groups of eukaryotes. This comprehensive membrane protein catalog of over 100,000 proteins was utilized to determine the evolutionary history of all membrane protein families throughout eukaryotes.  We also investigated the evolutionary history across eukaryotes of the antiviral Interferon induced transmembrane proteins (IFITM) and the G protein-coupled receptor (GPCR) superfamily in detail.  We identified ten novel human homologs to the IFITM proteins, which together with the known IFITMs forms a family that we call the Dispanins. Using phylogenetic analysis we show that the Dispanins first emerged in eukaryotes in a common ancestor of choanoflagellates and animals, and that the family later expanded in vertebrates into four subfamilies. The GPCR superfamily was mined across eukaryotic species and we present evidence for a common origin for four of the five main human GPCR families; Rhodopsin, Frizzled, Adhesion and Secretin in the cAMP receptor family that was found in non-metazoans and invertebrates, but has been lost in vertebrates. Here we present the first accurate estimation of the human proteome together with comprehensive functional and evolutionary classification and extend it to organisms that represents all major eukaryotic groups. Moreover, we identify a novel protein family, the Dispanins, which has an evolutionary history that has been formed by horizontal gene transfer from bacteria followed by expansions in the animal lineage. We also study the evolution of the GPCR superfamily throughout eukaryotic evolution and provide a comprehensive model of the evolution and relationship of these receptors.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 35 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 818
Keyword
Membrane proteins, Membrane proteome, molecular evolution, GPCRs, Dispanins, IFITM
National Category
Evolutionary Biology Bioinformatics and Systems Biology
Research subject
Medical Science
Identifiers
urn:nbn:se:uu:diva-181986 (URN)978-91-554-8484-2 (ISBN)
Public defence
2012-11-16, B22, BMC, Husargatan 3, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2012-10-26 Created: 2012-10-02 Last updated: 2013-01-23Bibliographically approved

Open Access in DiVA

fulltext(829 kB)267 downloads
File information
File name FULLTEXT01.pdfFile size 829 kBChecksum SHA-512
c9d1df80b391e73c8d8ef7292dc74f2d6b857781dcdde5370a3c600a01448773188df6e5c6d0e0574c10f42661907b22c65d888ce2e3c272055e76f434e8f6c3
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Sällman Almén, MarkusBringeland, NathalieFredriksson, RobertSchiöth, Helgi B.

Search in DiVA

By author/editor
Sällman Almén, MarkusBringeland, NathalieFredriksson, RobertSchiöth, Helgi B.
By organisation
Functional Pharmacology
In the same journal
PLoS ONE
Pharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar
Total: 267 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 720 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf