Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dose planning from MRI using machine learning for automatic segmentation of skull and air
KTH, School of Engineering Sciences (SCI), Physics.
2012 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2012.
Series
Trita-FYS, ISSN 0280-316X ; 2012:24
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-94833OAI: oai:DiVA.org:kth-94833DiVA: diva2:526119
Uppsok
Physics, Chemistry, Mathematics
Available from: 2012-05-11 Created: 2012-05-10 Last updated: 2012-05-11Bibliographically approved

Open Access in DiVA

fulltext(2989 kB)373 downloads
File information
File name FULLTEXT01.pdfFile size 2989 kBChecksum SHA-512
0fb1398fd36895efdc96b2569a860277401ed2746f8696573c7f236fb5fa02230972f533754c84b6a3058be7e3820b2280467d7a48c2d498bc46a052893c7553
Type fulltextMimetype application/pdf

By organisation
Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 373 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 170 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf