Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sinking of anhydrite blocks within a Newtonian salt diapir: modelling the influence of block aspect ratio and salt stratification
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Mineralogy Petrology and Tectonics.ORCID iD: 0000-0002-3316-658X
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Mineralogy Petrology and Tectonics.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Mineralogy Petrology and Tectonics.
2012 (English)In: Geophysical Journal International, ISSN 0956-540X, E-ISSN 1365-246X, Vol. 188, no 3, 763-778 p.Article in journal (Refereed) Published
Abstract [en]

2-D Finite Differences models are used to analyse the strain produced by gravity-driven sinking of dense rectangular inclusions through homogeneous and vertically stratified Newtonian salt. We systematically modelled the descent of dense blocks of different sizes and initial orientations (aspect ratios) representing the Main Anhydrite fragments documented within, for example, the Gorleben salt diapir. Model results demonstrate that size of the blocks is a governing parameter which dictates the amount of strain produced within the block and in the surrounding host salt. Initial block orientation (aspect ratio), on the other hand, causes fundamental differences in block deformation, while the resulting structures produced in the salt are principally the same in all models with homogeneous salt, covering shear zones and folding of passive markers. In models with vertically stratified salt with different viscosities, block descent takes place along complex paths. This results from greater strain accommodation by the salt formation with the lowest viscosity and an asymmetrical distribution of initial vertical shear stresses around the block. Consequently, in these models, block strain is lower compared with the models with homogeneous salt (for the same viscosity as the high-viscosity salt), and sinking is accompanied by block rotation. The latter causes diapir-scale disturbance of the pre-sinking salt stratigraphy and complex sinking paths of the blocks. In particular, vertically oriented blocks sink into high-viscosity salt and drag with them some low-viscosity salt, while horizontal blocks sink in the low-viscosity salt. The resultant sinking velocities vary strongly depending on the sinking path of the block. Based on model results and observed structural configuration within the Gorleben salt diapir, we conclude that the internal complexity of a salt diapir governs its post-ascent deformation. Salt structure and its interaction with dense blocks should hence be considered in the assessment of the long-term stability of storage sites for hazardous waste.

Place, publisher, year, edition, pages
2012. Vol. 188, no 3, 763-778 p.
Keyword [en]
Fracture and flow, Diapir and diapirism, High strain deformation zones
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:uu:diva-173820DOI: 10.1111/j.1365-246X.2011.05290.xISI: 000300567400003OAI: oai:DiVA.org:uu-173820DiVA: diva2:525805
Available from: 2012-05-09 Created: 2012-05-07 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

fulltext(3307 kB)331 downloads
File information
File name FULLTEXT01.pdfFile size 3307 kBChecksum SHA-512
5f8cff3af4cebe42015fd569e8e53c2bb69e5a7cd5989d03653c5b9a459daba42a122d38efca51759f9fed5aa7c852e1f9f1164fb3744611ccdd63273327db76
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Burchardt, SteffiKoyi, HeminFuchs, Lukas
By organisation
Mineralogy Petrology and Tectonics
In the same journal
Geophysical Journal International
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 331 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 402 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf