Change search
ReferencesLink to record
Permanent link

Direct link
The plurisubharmonic Mergelyan property
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics. (Komplex analys)
2012 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

In this thesis, we study two different kinds of approximation of plurisubharmonic functions.

The first one is a Mergelyan type approximation for plurisubharmonic functions. That is, we study which domains in C^n have the property that every continuous plurisubharmonic function can be uniformly approximated with continuous and plurisubharmonic functions defined on neighborhoods of the domain. We will improve a result by Fornaess and Wiegerinck and show that domains with C^0-boundary have this property. We will also use the notion of plurisubharmonic functions on compact sets when trying to characterize those continuous and plurisubharmonic functions that can be approximated from outside. Here a new kind of convexity of a domain comes in handy, namely those domains in C^n that have a negative exhaustion function that is plurisubharmonic on the closure. For these domains, we prove that it is enough to look at the boundary values of a plurisubharmonic function to know whether it can be approximated from outside.

The second type of approximation is the following: we want to approximate functions u that are defined on bounded hyperconvex domains Omega in C^n and have essentially boundary values zero and bounded Monge-Ampère mass, with increasing sequences of certain functions u_j that are defined on strictly larger domains. We show that for certain conditions on Omega, this is always possible. We also generalize this to functions with given boundary values. The main tool in the proofs concerning this second approximation is subextension of plurisubharmonic functions.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet , 2012. , 94 p.
Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 52
Keyword [en]
Complex Monge-Ampère operator, approximation, plurisubharmonic function, subextension, Mergelyan property, plurisubharmonic function on compact sets, Jensen measures
National Category
Mathematical Analysis
Research subject
URN: urn:nbn:se:umu:diva-52229ISBN: 978-91-7459-364-8OAI: diva2:501418
Public defence
2012-03-09, MIT-huset, MA121, Umeå universitet, Umeå, 10:15 (English)
Available from: 2012-02-17 Created: 2012-02-14 Last updated: 2012-02-14Bibliographically approved

Open Access in DiVA

The Plurisubharmonic Mergelyan property(517 kB)546 downloads
File information
File name FULLTEXT01.pdfFile size 517 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Hed, Lisa
By organisation
Department of Mathematics and Mathematical Statistics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 546 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 241 hits
ReferencesLink to record
Permanent link

Direct link