Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Realization and Scalability of Release and Protected Release Consistency Models in NoC based Systems
KTH, School of Information and Communication Technology (ICT), Electronic Systems.
KTH, School of Information and Communication Technology (ICT), Electronic Systems.
KTH, School of Information and Communication Technology (ICT), Electronic Systems.
KTH, School of Information and Communication Technology (ICT), Electronic Systems.ORCID iD: 0000-0003-0061-3475
2011 (English)In: Proceeding of 14th Euromicro Conference on Digital System Design, 2011, Oulu: IEEE Computer Society, 2011, 47-54 p.Conference paper, Published paper (Refereed)
Abstract [en]

This paper studies the realization and scalability of release and protected release consistency models in Network-on-Chip (NoC) based Distributed Shared Memory (DSM) multi-core systems. The protected release consistency (PRC) model is proposed as an extension of the release consistency (RC) model and provides further relaxation in the shared memory operations. The realization schemes of RC and PRC models use a transaction counter in each node of the NoC based multi-core (McNoC) systems. Further, we study the scalability of these RC and PRC models and evaluate their performance in the McNoC platform. A configurable NoC based platform with 2D mesh topology and deflection routing algorithm is used in the tests. We experiment both with synthetic and application workloads. The performance of the RC and PRC models are compared using sequential consistency (SC) as the baseline. The experiments show that the average code execution time for the PRC model in 8x8 network (64 cores) is reduced by 30.5% over SC, and by 6.5% over RC model. Average data execution time in the 8x8 network for the PRC model is reduced by almost 37% over SC and by 8.8% over RC. The increase in area for the PRC of RC is about 880 gates in the network interface ( 1.7% ).

Place, publisher, year, edition, pages
Oulu: IEEE Computer Society, 2011. 47-54 p.
Keyword [en]
Network-on-Chip, Distributed shared memory, Memory consistency;, Protected release consistency, Scalability
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-62185DOI: 10.1109/DSD.2011.11Scopus ID: 2-s2.0-80054986781ISBN: 978-1-4577-1048-3 (print)OAI: oai:DiVA.org:kth-62185DiVA: diva2:479932
Conference
14th Euromicro Conference on Digital System Design, (DSD 2011)
Note
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. QC 20120201Available from: 2012-02-01 Created: 2012-01-18 Last updated: 2013-02-04Bibliographically approved
In thesis
1. Architecture Support and Scalability Analysis of Memory Consistency Models in Network-on-Chip based Systems
Open this publication in new window or tab >>Architecture Support and Scalability Analysis of Memory Consistency Models in Network-on-Chip based Systems
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The shared memory systems should support parallelization at the computation (multi-core), communication (Network-on-Chip, NoC) and memory architecture levels to exploit the potential performance benefits. These parallel systems supporting shared memory abstraction both in the general purpose and application specific domains are confronting the critical issue of memory consistency. The memory consistency issue arises due to the unconstrained memory operations which leads to the unexpected behavior of shared memory systems. The memory consistency models enforce ordering constraints on the memory operations for the expected behavior of the shared memory systems. The intuitive Sequential Consistency (SC) model enforces strict ordering constraints on the memory operations and does not take advantage of the system optimizations both in the hardware and software. Alternatively, the relaxed memory consistency models relax the ordering constraints on the memory operations and exploit these optimizations to enhance the system performance at the reasonable cost. The purpose of this thesis is twofold. First, the novel architecture supports are provided for the different memory consistency models like: SC, Total Store Ordering (TSO), Partial Store Ordering (PSO), Weak Consistency (WC), Release Consistency (RC) and Protected Release Consistency (PRC) in the NoC-based multi-core (McNoC) systems. The PRC model is proposed as an extension of the RC model which provides additional reordering and relaxation in the memory operations. Second, the scalability analysis of these memory consistency models is performed in the McNoC systems.

The architecture supports for these different memory consistency models are provided in the McNoC platforms. Each configurable McNoC platform uses a packet-switched 2-D mesh NoC with deflection routing policy, distributed shared memory (DSM), distributed locks and customized processor interface. The memory consistency models/protocols are implemented in the customized processor interfaces which are developed to integrate the processors with the rest of the system. The realization schemes for the memory consistency models are based on a transaction counter and an an an address ddress ddress ddress ddress ddress ddress stack tacktack-based based based based based based novel approaches.approaches.approaches.approaches. approaches.approaches.approaches.approaches.approaches.approaches. The transaction counter is used in each node of the network to keep track of the outstanding memory operations issued by a processor in the system. The address stack is used in each node of the network to keep track of the addresses of the outstanding memory operations issued by a processor in the system. These hardware structures are used in the processor interface to enforce the required global orders under these different memory consistency models. The realization scheme of the PRC model in addition also uses acquire counter for further classification of the data operations as unprotected and protected operations.

The scalability analysis of these different memory consistency models is performed on the basis of different workloads which are developed and mapped on the various sized networks. The scalability study is conducted in the McNoC systems with 1 to 64-cores with various applications using different problem sizes and traffic patterns. The performance metrics like execution time, performance, speedup, overhead and efficiency are evaluated as a function of the network size. The experiments are conducted both with the synthetic and application workloads. The experimental results under different application workloads show that the average execution time under the relaxed memory consistency models decreases relative to the SC model. The specific numbers are highly sensitive to the application and depend on how well it matches to the architectures. This study shows the performance improvement under the relaxed memory consistency models over the SC model that is dependent on the computation-to-communication ratio, traffic patterns, data-to-synchronization ratio and the problem size. The performance improvement of the PRC and RC models over the SC model tends to be higher than 50% as observed in the experiments, when the system is further scaled up.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. xviii, 143 p.
Series
Trita-ICT-ECS AVH, ISSN 1653-6363 ; 12:11
Keyword
Memory consistency, Protected release consistency, Distributed shared memory; Network-on-Chip, Scalability
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-117700 (URN)978-91-7501-617-7 (ISBN)
Public defence
2013-03-13, Sal E, Forum, Isafjordsgatan 39, Kista, 09:00 (English)
Opponent
Supervisors
Note

QC 20130204

Available from: 2013-02-04 Created: 2013-02-02 Last updated: 2013-02-04Bibliographically approved

Open Access in DiVA