Change search
ReferencesLink to record
Permanent link

Direct link
Wake Measurements Behind An Array Of Two Model Wind Turbines
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2011 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

During the last decades the exploitation of energy from the wind has become one of the most promising renewable energy technologies. The main strive in today’s development of wind turbines is to increase the efficiency of the turbine and to build bigger rotors that are able to extract more power out of the wind. When it comes to the planning and designing of a wind park, also the aerodynamic interactions between the single turbines must be taken into account. The flow in the wake of the first row turbines is characterized by a significant deficit in wind velocity and by increased levels of turbulence. Consequently, the downstream turbines in a wind farm cannot extract as much power from the wind anymore. Furthermore, the additional turbulence in the wake could be a reason for increased material fatigue through flow-induced vibrations at the downstream rotor. The main focus of this experimental study is to investigate the local velocity deficit and the turbulence intensities in the wake behind an array of two model wind turbines. For two different turbine separation distances, the wake is scanned at three different downstream positions. The experiments are performed at the wind tunnel (1.9m x 2.7m cross section) at NTNU Trondheim using two model wind turbines with a rotor diameter of 0.9m. A hot wire probe is used to scan the wake behind the model turbines in defined positions.

Moving axially downstream the velocity deficit in the wake gradually recovers and the turbulence intensity levels slowly decrease. Furthermore, a gentle expansion of the wake can be observed. The wake profiles measured in close distances behind the rotor are characterized by evident asymmetries. Further downstream in the wake turbulent diffusion mechanisms cause a more uniform and more symmetrical flow field. Moreover, the turbulence intensity behind the second wind turbine is found to be significantly higher than behind one unobstructed turbine. Also, considerably higher velocity deficits are found in the near wake behind the second turbine compared to the wake behind one unobstructed turbine. However, the velocity profile at five rotor diameters downstream in the wake behind the second turbine is already very similar to the velocity distribution behind the first turbine. Furthermore, the velocity field and turbulence intensity distribution in the wake behind the second turbine is more symmetrical and more uniform than behind the first turbine.

Place, publisher, year, edition, pages
2011. , 131 p.
Keyword [en]
Wind turbine, wake, wind farm, wake interaction, velocity deficit, turbulence
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-61737OAI: diva2:479537
2011-12-20, EKV Library, Brinellvägen, Stockholm, 09:00 (English)
Available from: 2012-01-18 Created: 2012-01-17 Last updated: 2012-01-18Bibliographically approved

Open Access in DiVA

fulltext(4460 kB)4252 downloads
File information
File name FULLTEXT01.pdfFile size 4460 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bartl, Jan
By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 4252 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 231 hits
ReferencesLink to record
Permanent link

Direct link