Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Is Frequent Pattern Mining useful in building predictive models?
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2011 (English)In: ECML/PKDD 2011: Workshop of Collective Learning and Inference on Structured Data, 2011Conference paper, Published paper (Refereed)
Abstract [en]

The recent studies of pattern mining have given more attention to discovering patterns that are interesting, significant, discriminative and so forth, than simply frequent. Does this imply that the frequent patterns are not useful anymore? In this paper we carry out a survey of frequent pattern mining and, using an empirical study, show how far the frequent pattern mining is useful in building predictive models.

Place, publisher, year, edition, pages
2011.
Keyword [en]
Frequent pattern mining, predictive models, chemoinformatics
National Category
Information Systems
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-67149OAI: oai:DiVA.org:su-67149DiVA: diva2:469572
Conference
ECML/PKDD: Workshop of Collective Learning and Inference on Structured Data, Athens, Greece, 5-9 September 2011
Available from: 2011-12-26 Created: 2011-12-26 Last updated: 2014-02-26Bibliographically approved
In thesis
1. Learning predictive models from graph data using pattern mining
Open this publication in new window or tab >>Learning predictive models from graph data using pattern mining
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Learning from graphs has become a popular research area due to the ubiquity of graph data representing web pages, molecules, social networks, protein interaction networks etc. However, standard graph learning approaches are often challenged by the computational cost involved in the learning process, due to the richness of the representation. Attempts made to improve their efficiency are often associated with the risk of degrading the performance of the predictive models, creating tradeoffs between the efficiency and effectiveness of the learning. Such a situation is analogous to an optimization problem with two objectives, efficiency and effectiveness, where improving one objective without the other objective being worse off is a better solution, called a Pareto improvement. In this thesis, it is investigated how to improve the efficiency and effectiveness of learning from graph data using pattern mining methods. Two objectives are set where one concerns how to improve the efficiency of pattern mining without reducing the predictive performance of the learning models, and the other objective concerns how to improve predictive performance without increasing the complexity of pattern mining. The employed research method mainly follows a design science approach, including the development and evaluation of artifacts. The contributions of this thesis include a data representation language that can be characterized as a form in between sequences and itemsets, where the graph information is embedded within items. Several studies, each of which look for Pareto improvements in efficiency and effectiveness are conducted using sets of small graphs. Summarizing the findings, some of the proposed methods, namely maximal frequent itemset mining and constraint based itemset mining, result in a dramatically increased efficiency of learning, without decreasing the predictive performance of the resulting models. It is also shown that additional background knowledge can be used to enhance the performance of the predictive models, without increasing the complexity of the graphs.

Place, publisher, year, edition, pages
Stockholm: Department of Computer and Systems Sciences, Stockholm University, 2014. 118 p.
Series
Report Series / Department of Computer & Systems Sciences, ISSN 1101-8526 ; 14-003
Keyword
Machine Learning, Graph Data, Pattern Mining, Classification, Regression, Predictive Models
National Category
Computer Science
Research subject
Computer and Systems Sciences
Identifiers
urn:nbn:se:su:diva-100713 (URN)978-91-7447-837-2 (ISBN)
Public defence
2014-03-25, room B, Forum, Isafjordsgatan 39, Kista, 13:00 (English)
Opponent
Supervisors
Available from: 2014-03-03 Created: 2014-02-11 Last updated: 2014-03-04Bibliographically approved

Open Access in DiVA

fulltext(545 kB)187 downloads
File information
File name FULLTEXT01.pdfFile size 545 kBChecksum SHA-512
06191499ef8cb321a68273cdc3ee584474a971462ca2e059dd1280020e1eb3889353bffc1a0619097f33eb157e541c70b62b7f37bdf3428fc36bb4c08ea6c84d
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Karunaratne, Thashmee
By organisation
Department of Computer and Systems Sciences
Information Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 187 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf