References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Optimal doubling, Reifenberg flatness and operators of p-Laplace typePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2011 (English)In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 74, no 17, 5943-5955 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2011. Vol. 74, no 17, 5943-5955 p.
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-163435DOI: 10.1016/j.na.2011.05.061OAI: oai:DiVA.org:uu-163435DiVA: diva2:463936
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt384",{id:"formSmash:j_idt384",widgetVar:"widget_formSmash_j_idt384",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt390",{id:"formSmash:j_idt390",widgetVar:"widget_formSmash_j_idt390",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt396",{id:"formSmash:j_idt396",widgetVar:"widget_formSmash_j_idt396",multiple:true});
Available from: 2012-11-30 Created: 2011-12-12 Last updated: 2013-08-30Bibliographically approved
##### In thesis

In this paper we consider operators of p-Laplace type of the form ∇·A(x,∇u) = 0. ConcerningA we assume, for p ∈ (1,∞) fixed, an appropriate ellipticity type condition, H¨older continuityin x and that A(x, ) = ||p−1A(x, /||) whenever x ∈ Rn and ∈ Rn \ {0}. Let ⊂ Rn be abounded domain, let D be a compact subset of . We say that ˆu = ˆup,D, is the A-capacitaryfunction for D in if ˆu ≡ 1 on D, ˆu ≡ 0 on @ in the sense of W1,p0 () and ∇·A(x,∇ˆu) = 0 in \D in the weak sense. We extend ˆu to Rn \ by putting ˆu ≡ 0 on Rn \ . Then there existsa unique finite positive Borel measure ˆμ on Rn, with support in @, such thatZ hA(x,∇ˆu),∇i dx = −Z dˆμ whenever ∈ C∞0 (Rn \ D).In this paper we prove that if is Reifenberg flat with vanishing constant, thenlimr→0infw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= limr→0supw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= n−1,for every , 0 < ≤ 1. In particular, we prove that ˆμ is an asymptotically optimal doublingmeasure on @.

1. Boundary Behavior of *p*-Laplace Type Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay615186",{id:"formSmash:j_idt669:0:j_idt673",widgetVar:"overlay615186",target:"formSmash:j_idt669:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1123",{id:"formSmash:lower:j_idt1123",widgetVar:"widget_formSmash_lower_j_idt1123",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1124_j_idt1126",{id:"formSmash:lower:j_idt1124:j_idt1126",widgetVar:"widget_formSmash_lower_j_idt1124_j_idt1126",target:"formSmash:lower:j_idt1124:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});