Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of supercritical carbon dioxide heat exchangers in cooling process
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
2006 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Carbon dioxide transcritical cycles have become more and more investigated during the last decade. For all systems operating with such a cycle, there will be at least one heat exchanger to either heat or cool the supercritical carbon dioxide. Unlike in the sub-critical region, the supercritical carbon dioxide’s thermophysical properties will have sharp variations in the region close to its critical point. This variation has a significant influence on the shape of the heat exchanger’s temperature profile and the heat transfer performance of the heat exchanger. Therefore, the performance of the heat exchanger used for supercritical carbon dioxide cooling or heating process should be evaluated by taking this effect into account. This paper discusses the heat exchangers used for supercritical carbon dioxide refrigeration process including a suction gas heat exchanger in the cycle. Engineering Equation Solver (EES)1 and Refprop 7.02 are used for cycle calculations and for properties calculations.

Place, publisher, year, edition, pages
Purdue University Press, 2006.
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-50263OAI: oai:DiVA.org:kth-50263DiVA: diva2:461427
Conference
International Refrigeration and Air Conditioning Conference at Purdue, July 17-20, 2006
Note
QC 20111206Available from: 2011-12-06 Created: 2011-12-04 Last updated: 2011-12-07Bibliographically approved
In thesis
1. Thermodynamic Cycles using Carbon Dioxide as Working Fluid: CO2 transcritical power cycle study
Open this publication in new window or tab >>Thermodynamic Cycles using Carbon Dioxide as Working Fluid: CO2 transcritical power cycle study
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The interest in utilizing the energy in low‐grade heat sources and waste heat is increasing. There is an abundance of such heat sources, but their utilization today is insufficient, mainly due to the limitations of the conventional power cycles in such applications, such as low efficiency, bulky size or moisture at the expansion outlet (e.g. problems for turbine blades).

Carbon dioxide (CO2) has been widely investigated for use as a working fluid in refrigeration cycles, because it has no ozonedepleting potential (ODP) and low global warming potential (GWP). It is also inexpensive, non‐explosive, non‐flammable and abundant in nature. At the same time, CO2 has advantages in use as a working fluid in low‐grade heat resource recovery and energy conversion from waste heat, mainly because it can create a better matching to the heat source temperature profile in the supercritical region to reduce the irreversibility during the heating process. Nevertheless, the research in such applications is very limited.

This study investigates the potential of using carbon dioxide as a working fluid in power cycles for low‐grade heat source/waste heat recovery.

At the beginning of this study, basic CO2 power cycles, namely carbon dioxide transcritical power cycle, carbon dioxide Brayton cycle and carbon dioxide cooling and power combined cycle were simulated and studied to see their potential in different applications (e.g. low‐grade heat source applications, automobile applications and heat and power cogeneration applications). For the applications in automobile industries, low pressure drop on the engine’s exhaust gas side is crucial to not reducing the engine’s performance. Therefore, a heat exchanger with low‐pressure drop on the secondary side (i.e. the gas side) was also designed, simulated and tested with water and engine exhaust gases at the early stage of the study (Appendix 2).

The study subsequently focused mainly on carbon dioxide transcritical power cycle, which has a wide range of applications. The performance of the carbon dioxide transcritical power cycle has been simulated and compared with the other most commonly employed power cycles in lowgrade heat source utilizations, i.e. the Organic Rankin Cycle (ORC). Furthermore, the annual performance of the carbon dioxide transcritical power cycle in utilizing the low‐grade heat source (i.e. solar) has also been simulated and analyzed with dynamic simulation in this work.

Last but not least, the matching of the temperature profiles in the heat exchangers for CO2 and its influence on the cycle performance have also been discussed. Second law thermodynamic analyses of the carbon dioxide transcritical power systems have been completed.

The simulation models have been mainly developed in the software known as Engineering Equation Solver (EES)1 for both cycle analyses and computer‐aided heat exchanger designs. The model has also been connected to TRNSYS for dynamic system annual performance simulations. In addition, Refprop 7.02 is used for calculating the working fluid properties, and the CFD tool (COMSOL) 3 has been employed to investigate the particular phenomena influencing the heat exchanger performance.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology(KTH), 2011. xxii, 128 p.
Series
Trita-REFR, ISSN 1102-0245 ; 11:03
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-50261 (URN)978-91-7501-187-5 (ISBN)
Public defence
2011-12-09, M2, Brinellvägen 64, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20111205Available from: 2011-12-05 Created: 2011-12-04 Last updated: 2011-12-09Bibliographically approved

Open Access in DiVA

fulltext(359 kB)219 downloads
File information
File name FULLTEXT01.pdfFile size 359 kBChecksum SHA-512
d37dd5ade7507f6108699713abcac514028f7e8fd9d5e767012bb08b63c1ec140e1110d08d80b508dc13884e6ae9f82cc9ea9509abdea6a69601eaecce2fa082
Type fulltextMimetype application/pdf

Other links

Buy complete proceedings

Search in DiVA

By author/editor
Chen, YangLundqvist, Per
By organisation
Applied Thermodynamics and Refrigeration
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 219 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 180 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf