Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Incorporating predicted local mechanical behaviour of cast components into finite element simulations
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0003-2671-9825
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
2012 (English)In: Materials & Design, ISSN 0261-3069, Vol. 34, 494-500 p.Article in journal (Refereed) Published
Abstract [en]

A software which enables the incorporation of local variations in both elastic and plastic mechanical behaviour predicted by a casting process simulation into a Finite Element Method (FEM) simulation is presented. The software uses a piecewise linearization of the Hollomon or the Ludwigson equation to characterise plastic mechanical behaviour of the material on an element level throughout a component. The accuracy obtained in the linearization is investigated, and the performance of the software is studied using different input parameters. The applicability of the software is verified and demonstrated on a ductile iron component, and a simulation strategy for cast components denoted a closed chain of simulations for cast components is discussed.

Place, publisher, year, edition, pages
2012. Vol. 34, 494-500 p.
Keyword [en]
Casting, Mechanical, Plastic behaviour
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-16743DOI: 10.1016/j.matdes.2011.08.029OAI: oai:DiVA.org:hj-16743DiVA: diva2:457629
Available from: 2011-11-18 Created: 2011-11-18 Last updated: 2017-08-14Bibliographically approved
In thesis
1. Microstructure-based Mechanical Behaviour in Structural Analyses of Cast Components
Open this publication in new window or tab >>Microstructure-based Mechanical Behaviour in Structural Analyses of Cast Components
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

In the process of developing cast iron and cast aluminium components, the co-operation between product development and production is important. On the engineering level, this co-operation is limited already in the product development phase e.g. by the lack of established methods to consider the mechanical behaviour of the completed component.

This thesis aims to increase the possibilities for co-operation in the product realisation process between product development and production by enabling the use of predicted local mechanical behaviour in structural analyses of cast components. A literature review on existing simulation methods and a work on characterization of mechanical behaviour from microstructural features are performed to identify important knowledge gaps. A simulation strategy is formulated that is able to predict local mechanical behaviour throughout the entire component and incorporate the behaviour into a Finite Element Method (FEM) simulation of the structural behaviour of the component. In the simulation strategy, the component specific microstructure-based mechanical behaviour is predicted using a casting process simulation. A computer program is developed to create FEM material definitions that capture the local variations in mechanical behaviour throughout the component.

The relevance of the simulation strategy is demonstrated for a ductile iron component. It is found that the local variations in mechanical behaviour result in a stress-strain distribution in the component that a homogeneous material description fails to express. Residual stresses affect the mechanical behaviour at low loads. At higher loads, however, the accuracy of the simulation is determined by the local variations in mechanical behaviour. Using a material reduction technique, the local mechanical behaviour can be incorporated without increasing the FEM simulation time. 

Place, publisher, year, edition, pages
Jönköping: School of Engineering, Jönköping University, 2012. 42 p.
Series
JTH Dissertation Series, 1
Keyword
Component behaviour, Structural analysis, Mechanical behaviour, Casting process simulation, Finite element method simulation
National Category
Mechanical Engineering Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:hj:diva-19127 (URN)978-91-87289-01-9 (ISBN)
Presentation
2012-08-31, Jönköpings Tekniska Högskola, E1405 Gjuterisalen, Gjuterigatan 5, Jönköping, 10:00 (Swedish)
Opponent
Supervisors
Available from: 2012-08-09 Created: 2012-08-08 Last updated: 2016-01-18Bibliographically approved
2. Simulation of Microstructure-based Mechanical Behaviour of Cast Components
Open this publication in new window or tab >>Simulation of Microstructure-based Mechanical Behaviour of Cast Components
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the process of developing cast iron and cast aluminium components, a high level of co-operation between product development and production is of great importance. From an engineering standpoint, this co-operation is limited early in the product development phase by e.g. a lack of established methods for the consideration of local variations in the mechanical behaviour of a finished component.

This thesis aims to increase the possibilities for co-operation between product development and production during the product realisation process by introducing and studying the use of predicted local mechanical behaviour in structural analyses of cast components. A literature review of existing simulation methods and a work on characterisation of mechanical behaviour from microstructural features have been performed to identify important knowledge gaps. A simulation strategy has been formulated which is able to predict local mechanical behaviour throughout the entire component, and to incorporate this into a Finite Element Method (FEM) simulation of the structural behaviour of the component. In the simulation strategy, componentspecific microstructure-based mechanical behaviour is predicted using a casting process simulation. A computer program was developed to create FEM material definitions which capture the local variations in mechanical behaviour throughout the component. Using a material reduction technique, the local mechanical behaviour can be incorporated without increasing the FEM simulation time.

The relevance of the simulation strategy was experimentally verified on cast aluminium samples, where the strain field was observed using Digital Image Correlation (DIC). It was found that the local variations in mechanical behaviour cause a stress-strain distribution that deviates from that predicted by a homogeneous material description, indicating the importance of calculating with and including such variations in material behaviour in FEM simulations. Numerical investigations demonstrate the strategy’s relevance for predicting the behaviour of cast aluminium and ductile iron components.

Place, publisher, year, edition, pages
School of Engineering, Jönköping University, 2014. 51 p.
Series
JTH Dissertation Series, 3
Keyword
Component behaviour, structural analysis, mechanical behaviour, casting process simulation, Finite Element Method (FEM) simulation
National Category
Metallurgy and Metallic Materials Applied Mechanics
Identifiers
urn:nbn:se:hj:diva-23695 (URN)978-91-87289-04-0 (ISBN)
Public defence
2014-05-09, E1405, Tekniska Högskolan, Gjuterigatan 5, Jönköping, 10:00 (English)
Opponent
Supervisors
Available from: 2014-04-14 Created: 2014-04-11 Last updated: 2014-04-14Bibliographically approved

Open Access in DiVA

fulltext(1012 kB)408 downloads
File information
File name FULLTEXT01.pdfFile size 1012 kBChecksum SHA-512
f2101a260bc28f1417c5296fc217ebb66f84188d41b42af9024544844364981b8ae20b776565e410546e53de168c8ed94f45b5988c479dcaf29d4c76b45ebef4
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Olofsson, JakobSvensson, Ingvar L.

Search in DiVA

By author/editor
Olofsson, JakobSvensson, Ingvar L.
By organisation
JTH. Research area Materials and manufacturing – Casting
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 408 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 545 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf