Change search
ReferencesLink to record
Permanent link

Direct link
Constraining Crustal Volatile Release in Magmatic Conduits by Synchrotron X-ray μ-CT
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology. (CEMPEG)
2011 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Magma-crust interaction in magma reservoirs and conduits is a crucial process during magma evolution and ascent. This interaction is recorded by crustal xenoliths that frequently show partial melting, inflation and disintegration textures. Frothy xenoliths are widespread in volcanic deposits from all types of geological settings and indicate crustal gas liberation. To unravel the observed phenomena of frothy xenolith formation we experimentally simulated the behaviour of crustal lithologies in volcanic conduits. We subjected various sedimentary lithologies to elevated temperature (maximum 916 °C) and pressure (maximum 160 MPa) in closed-system autoclaves. Experimental conditions were held constant between 24h and 5 days. Controlled decompression to atmospheric pressure then simulated xenolith ascent. Pressure release was a function of temperature decline in our setup. Temperature lapse rate proceeded exponentially; the mean rate during the first 30 minutes was 17.8 ˚C/min and the mean decompression rate during the same interval was 3.0 MPa/min, eventually reaching room temperature after approximately 5.5 hours of slow cooling. The experimental products have been analysed for internal textures by synchrotron X-ray μ-CT at a resolution of 3.4 – 9 microns/pixel. This method permits visualisation and quantification of vesicle volumes, -networks and-connectivity in 3D without destroying the sample.

Experimental products closely reproduced textures of natural frothy xenoliths in 3D and define anevolutionary sequence from partial melting to gas exsolution and bubble nucleation that eventually leads to the development of three-dimensional bubble networks. Experimental P-T-t conditions and especially rock lithology proved decisive for degassing behaviour and ensuing bubble nucleation during decompression. Progressive bubble nucleation leads to subsequent bubble coalescence to form interconnected bubble networks. This, in turn, enables efficient gas liberation and release. Our results attest to significant potential of even very common crustal rock types to release volatiles and develop interconnected bubble networks upon heating and decompression in magmatic systems. Crustal volatile input from xenoliths affects magma rheology and may drive magmas to sudden explosive eruptions. Our experiments offer insight into the mechanism of how such crustal volatile liberation is accomplished.

Place, publisher, year, edition, pages
2011. , 115 p.
, Examensarbete vid Institutionen för geovetenskaper, ISSN 1650-6553 ; 225
Keyword [en]
xenoliths, crustal gases, synchrotron X-ray μ-CT, 3D-bubble networks, gas migration, magmatic volatile budget, explosive eruption
National Category
URN: urn:nbn:se:uu:diva-160230OAI: diva2:449053
Life Earth Science
Available from: 2011-12-29 Created: 2011-10-18 Last updated: 2011-12-29Bibliographically approved

Open Access in DiVA

fulltext(16993 kB)496 downloads
File information
File name FULLTEXT01.pdfFile size 16993 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Solid Earth Geology

Search outside of DiVA

GoogleGoogle Scholar
Total: 496 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 362 hits
ReferencesLink to record
Permanent link

Direct link