Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterizing and visualizing spatio-temporal patterns in hourly precipitation records
Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Arts and Sciences.
Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Arts and Sciences.
Department of Earth Sciences, University of Gothenburg, Sweden.
Department of Earth Sciences, University of Gothenburg, Sweden.
Show others and affiliations
2012 (English)In: Journal of Theoretical and Applied Climatology, ISSN 0177-798X, E-ISSN 1434-4483, Vol. 109, no 3-4, 333-343 p.Article in journal (Refereed) Published
Abstract [en]

We develop new techniques to summarize and visualize spatial patterns of coincidence in weather events such as more or less heavy precipitation at a network of meteorological stations. The cosine similarity measure, which has a simple probabilistic interpretation for vectors of binary data, is generalized to characterize spatial dependencies of events that may reach different stations with a variable time lag. More specifically, we reduce such patterns into three parameters (dominant time lag, maximum cross-similarity, and window-maximum similarity) that can easily be computed for each pair of stations in a network. Furthermore, we visualize such threeparameter summaries by using colour-coded maps of dependencies to a given reference station and distance-decay plots for the entire network. Applications to hourly precipitation data from a network of 93 stations in Sweden illustrate how this method can be used to explore spatial patterns in the temporal synchrony of precipitation events.

Place, publisher, year, edition, pages
Springer, 2012. Vol. 109, no 3-4, 333-343 p.
Keyword [en]
precipitation; hourly rainfall records; spatial dependence; time lag; cosine similarity
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:liu:diva-71297DOI: 10.1007/s00704-011-0574-xISI: 000307243900002OAI: oai:DiVA.org:liu-71297DiVA: diva2:447073
Note

funding agencies|Swedish Research Council (VR)||Gothenburg Atmospheric Science Centre (GAC)||FORMAS|2007-1048-8700*51|

Available from: 2011-10-10 Created: 2011-10-10 Last updated: 2017-12-08Bibliographically approved
In thesis
1. Characterizing Temporal Changes and Inter-Site Correlations in Daily and Sub-Daily Precipitation Extremes
Open this publication in new window or tab >>Characterizing Temporal Changes and Inter-Site Correlations in Daily and Sub-Daily Precipitation Extremes
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Information on weather extremes is essential for risk awareness in planning of infrastructure and agriculture, and it may also playa key role in our ability to adapt to recurrent or more or less unique extreme events. This thesis reports new statistical methodologies that can aid climate risk assessment under conditions of climate change. This increasing access to high temporal resolution of data is a central factor when developing novel techniques for this purpose. In particular, a procedure is introduced for analysis of long-term changes in daily and sub-daily records of observed or modelled weather extremes. Extreme value theory is employed to enhance the power of the proposed statistical procedure, and inter-site dependence is taken into account to enable regional analyses. Furthermore, new methods are presented to summarize and visualize spatial patterns in the temporal synchrony and dependence of weather events such as heavy precipitation at a network of meteorological stations. The work also demonstrates the significance of accounting for temporal synchrony in the diagnostics of inter-site asymptotic dependence.

Abstract [sv]

Information om extrema väderhändelser är väsentligt för riskmedveten planering av infrastruktur och jordbruk. Sådan information kan också spela en avgörande roll för vår förmåga att anpassa oss till extremhändelser som är regelbundet återkommande eller mer eller mindre unika. Denna avhandling beskriver nya statistiska metoder som kan bidra till att bedöma klimatrisker när klimatet förändras. Den ökande tillgången till data med hög tidsupplösning är en central faktor när vi utvecklar nya tekniker för detta ändamål. Speciellt introducerar vi metodik för att analysera långsiktiga förändringar i dagliga eller ännu mera högupplösta data avseende observerade eller modellerade väderextremer. Extremvärdesteori utnyttias för att öka styrkan av statistiska tester, och hänsyn tas till beroendet mellan data från olika platser så att regionala bedömningar blir möjliga. Vidare presenteras nya metoder för att sammanfatta och visualisera rumsliga mönster i samstämmigheten av och beroendet mellan extrema väderhändelser såsom hög nederbördsintensitet i ett nätverk av meteorologiska stationer. Arbetet visar också betydelsen av ta hänsyn till den tidsmässiga överensstämmelsen när man undersöker det asymptotiska beroendet mellan extrema händelser vid olika stationer.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2011. 53 p.
Series
Linköping Studies in Arts and Science, ISSN 0282-9800 ; 536Linköping Studies in Statistics, ISSN 1651-1700 ; 13
Keyword
Klimatförändringar, matematiska modeller
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:liu:diva-70282 (URN)978-91-7393-110-6 (ISBN)
Public defence
2011-10-10, Visionen, Hus B, Campus Valla, Linköpings universitet, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2011-10-10 Created: 2011-08-30 Last updated: 2014-10-07Bibliographically approved

Open Access in DiVA

fulltext(905 kB)704 downloads
File information
File name FULLTEXT01.pdfFile size 905 kBChecksum SHA-512
009b21a74b20bd61fcbd551e8c79baf38fe6306153e85398d67bf3b547e6c0b336f3fc9a552bf64c6f0c2cbbbff9b2b7d67b0b98ba0f73ddb570cab93eaf5aa2
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Burauskaite-Harju, AgneGrimvall, Anders
By organisation
StatisticsFaculty of Arts and Sciences
In the same journal
Journal of Theoretical and Applied Climatology
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf