Change search
ReferencesLink to record
Permanent link

Direct link
Adaptive Aggregation of Recommender Systems
Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Computer and Information Science.
2011 (English)MasteroppgaveStudent thesis
Abstract [en]

In the field of artificial intelligence, recommender systems are methods for predicting the relevance items to a users. The items can be just about anything, for example documents, articles, movies, music, events or other users. Recommender systems examine data such as ratings, query logs, user behavior and social connections to predict what each user will think of each item. Modern recommender systems combine multiple standard recommenders in order to leverage disjoint patterns in available data. By combining different methods, complex predictions that rely on much evidence can be made. These aggregations can for example be done by estimating weights that result in an optimal combination. However, we posit these systems have an important weakness. There exists an underlying, misplaced subjectivity to relevance prediction. Each chosen recommender system reflects one view of how users and items should be modeled. We believe the selection of recommender methods should be automatically chosen based on their predicted accuracy for each user and item. After all, a system that insists on being adaptive in one particular way is not really adaptive at all. This thesis presents a novel method for prediction aggregation that we call adaptive recommenders. Multiple recommender systems are combined on a per-user and per-item basis by estimating their individual accuracy in the current context. This is done by creating a secondary set of error estimating recommenders. The core insight is that standard recommenders can be used to estimate the accuracy of other recommenders. As far as we know, this type of adaptive prediction aggregation has not been done before. Prediction aggregation (combining scores) is tested in a recommendation scenario. Rank aggregation (sorting results lists) is tested in a personalized search scenario. Our initial results are promising and show that adaptive recommenders can outperform both standard recommenders and simple aggregation methods. We will also discuss the implications and limitations of our results.

Place, publisher, year, edition, pages
Institutt for datateknikk og informasjonsvitenskap , 2011. , 104 p.
Keyword [no]
ntnudaim:6151, MTDT datateknikk, Intelligente systemer
URN: urn:nbn:no:ntnu:diva-13915Local ID: ntnudaim:6151OAI: diva2:444230
Available from: 2011-09-28 Created: 2011-09-28

Open Access in DiVA

fulltext(2152 kB)439 downloads
File information
File name FULLTEXT01.pdfFile size 2152 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(47 kB)24 downloads
File information
File name COVER01.pdfFile size 47 kBChecksum SHA-512
Type coverMimetype application/pdf
attachment(75754 kB)1156 downloads
File information
File name ATTACHMENT01.zipFile size 75754 kBChecksum SHA-512
Type attachmentMimetype application/zip

By organisation
Department of Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 439 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 99 hits
ReferencesLink to record
Permanent link

Direct link