Change search
ReferencesLink to record
Permanent link

Direct link
Scalar wave scattering from two-dimensional, randomly rough surfaces
Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, Department of Physics.
2011 (English)MasteroppgaveStudent thesis
Abstract [en]

We study scalar waves scattered from self-affine and Gaussian correlated surfaces. The simulations are performed using rigorous simulation of the integral equations derived from the Helmholtz equation, describing a scalar wave above a non-penetrable surface with a hard wall or free surface boundary condition. An incident, Gaussian shaped beam is scattered from the surface, and the full angular distribution of the scattered intensity is obtained. Self-affine and Gaussian correlated random surfaces are generated, and the resulting scattered intensity is averaged over a large number of surfaces (in the order $N_s=3000$), using the ergodicity of the surface. Compared with analytical calculation of the scattered intensity in the Kirchhoff approximation, our approach gives similar results for less rough surfaces. Compared with simulations of electromagnetic waves scattered from a perfect conductor, without recording the polarisation of the scattered light, our simulations give similar results when using a hard wall boundary condition. We observe phenomena such as specular scattering for less rough surfaces, diffuse forward scattering for more rough surfaces and enhanced backscattering for surfaces where waves scattered multiple times by the surface roughness gives a large contribution to the scattered intensity.

Place, publisher, year, edition, pages
Institutt for fysikk , 2011. , 64 p.
Keyword [no]
ntnudaim:6513, MTFYMA fysikk og matematikk, Teknisk fysikk
URN: urn:nbn:no:ntnu:diva-13847Local ID: ntnudaim:6513OAI: diva2:443218
Available from: 2011-09-23 Created: 2011-09-23

Open Access in DiVA

fulltext(7106 kB)275 downloads
File information
File name FULLTEXT01.pdfFile size 7106 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(47 kB)31 downloads
File information
File name COVER01.pdfFile size 47 kBChecksum SHA-512
Type coverMimetype application/pdf

By organisation
Department of Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 275 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 66 hits
ReferencesLink to record
Permanent link

Direct link