Change search
ReferencesLink to record
Permanent link

Direct link
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.ORCID iD: 0000-0002-9081-2170
2009 (English)In: Wiley Encyclopedia of Computer Science and Engineering / [ed] Benjamin Wah, Hoboken, New Jersey: John Wiley & Sons, 2009, 2495-2504 p.Chapter in book (Refereed)
Abstract [en]

Scale-space theory is a framework for multiscale image representation, which has been developed by the computer vision community with complementary motivations from physics and biologic vision. The idea is to handle the multiscale nature of real-world objects, which implies that object may be perceived in different ways depending on the scale of observation. If one aims to develop automatic algorithms for interpreting images of unknown scenes, no way exists to know a priori what scales are relevant. Hence, the only reasonable approach is to consider representations at all scales simultaneously. From axiomatic derivations is has been shown that given the requirement that coarse-scale representations should correspond to true simplifications of fine scale structures, convolution with Gaussian kernels and Gaussian derivatives is singled out as a canonical class of image operators forthe earliest stages of visual processing. These image operators can be used as basis to solve a large variety of visual tasks, including feature detection, feature classification, stereo matching, motion descriptors, shape cues, and image-based recognition. By complementing scale-space representation with a module for automatic scale selection based on the maximization of normalized derivatives over scales, early visual modules can be made scale invariant. In this way, visual modules canadapt automatically to the unknown scale variations that may occur because of objects and substructures of varying physical size as well as objects with varying distances to the camera. An interesting similarity to biologic vision is that the scale-space operators resemble closely receptive field profiles registered in neurophysiologic studies of the mammalian retina and visual cortex.

Place, publisher, year, edition, pages
Hoboken, New Jersey: John Wiley & Sons, 2009. 2495-2504 p.
Keyword [en]
computer vision, image processing, multi-scale representation, gaussian smoothing
National Category
Computer Science Computer Vision and Robotics (Autonomous Systems) Mathematics
URN: urn:nbn:se:kth:diva-40202DOI: 10.1002/9780470050118.ecse609OAI: diva2:441147
Swedish Research Council, 2004-4680
QC 20110914Available from: 2012-05-24 Created: 2011-09-13 Last updated: 2012-05-24Bibliographically approved

Open Access in DiVA

fulltext(1151 kB)2863 downloads
File information
File name FULLTEXT01.pdfFile size 1151 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindeberg, Tony
By organisation
Computational Biology, CB
Computer ScienceComputer Vision and Robotics (Autonomous Systems)Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 2863 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 1298 hits
ReferencesLink to record
Permanent link

Direct link