Change search
ReferencesLink to record
Permanent link

Direct link
Exploring relationships between students’ interaction and learning with a haptic virtual biomolecular model
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology. (Visual learning and communication)ORCID iD: 0000-0001-8888-6843
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology. (Visual learning and communication)ORCID iD: 0000-0002-4694-5611
2011 (English)In: Computers and education, ISSN 0360-1315, E-ISSN 1873-782X, Vol. 57, no 3, 2095-2105 p.Article in journal (Refereed) Published
Abstract [en]

This study explores tertiary students’ interaction with a haptic virtual model representing the specific binding of two biomolecules, a core concept in molecular life science education. Twenty students assigned to a haptics (experimental) or no-haptics (control) condition performed a “docking” task where users sought the most favourable position between a ligand and protein molecule, while students’ interactions with the model were logged. Improvement in students’ understanding of biomolecular binding was previously measured by comparing written responses to a target conceptual question before and after interaction with the model. A log-profiling tool visualized students’ movement of the ligand molecule during the docking task. Multivariate parallel coordinate analyses explored any relationships in the entire student data set. The haptics group produced a tighter constellation of collected final docked ligand positions in comparison with no-haptics students, coupled to docking profiles that depicted a more fine-tuned ligand traversal. Students in the no-haptics condition employed double the amount of interactive behaviours concerned with switching between different visual chemical representations offered by the model. In the no-haptics group, this visually intense processing was synonymous with erroneously ‘fitting’ the ligand closer distances to the protein surface. Students who showed higher learning gains tended to engage fewer visual representational switches, and were from the haptics group, while students with a higher spatial ability also engaged fewer visual representational switches, irrespective of assigned condition. From an information-processing standpoint, visual and haptic coordination may offload the visual pathway by placing less strain on visual working memory. From an embodied cognition perspective, visual and tactile sensorimotor interactions in the macroworld may provide access to constructing knowledge about submicroscopic phenomena. The results have cognitive and practical implications for the use of multimodal virtual reality technologies in educational contexts.

Place, publisher, year, edition, pages
Elsevier, 2011. Vol. 57, no 3, 2095-2105 p.
Keyword [en]
Interactive learning environments; multimedia systems; pedagogical issues; post-secondary education; virtual reality
National Category
Didactics
Identifiers
URN: urn:nbn:se:liu:diva-68996DOI: 10.1016/j.compedu.2011.05.013ISI: 000294099000022OAI: oai:DiVA.org:liu-68996DiVA: diva2:423290
Projects
VisMolLS
Available from: 2011-06-15 Created: 2011-06-15 Last updated: 2016-05-04Bibliographically approved

Open Access in DiVA

fulltext(1036 kB)959 downloads
File information
File name FULLTEXT01.pdfFile size 1036 kBChecksum SHA-512
681edb649539d0699a58449544991a1d7ecccb60970ee1b56f6fcc4653fa63fb24a8d1a6632463abbb3ec046325fd242a26cfb6abe4030ad9f23292f5501155b
Type fulltextMimetype application/pdf

Other links

Publisher's full textLink to narrated video

Search in DiVA

By author/editor
Schönborn, Konrad J.Bivall, PetterTibell, Lena A. E.
By organisation
Media and Information TechnologyThe Institute of Technology
In the same journal
Computers and education
Didactics

Search outside of DiVA

GoogleGoogle Scholar
Total: 959 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 491 hits
ReferencesLink to record
Permanent link

Direct link