Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Equidistribution towards the Green current in complex dynamics
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.). (Dynamical Systems)
2011 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

Given a holomorphic self-map of complex projective space of de-gree larger than one, we prove that there exists a finite collection oftotally invariant algebraic sets with the following property: given anypositive closed (1,1)-current of mass 1 with no mass on any element of this family, the sequence of normalized pull-backs of the current converges to the Green current. Under suitable geometric conditions on the collection of totally invariant algebraic sets, we prove a sharper equidistribution result.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2011. , viii, 67 p.
Series
Trita-MAT. MA, ISSN 1401-2278 ; 11:04
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-34264ISBN: 978-91-7501-042-7 (print)OAI: oai:DiVA.org:kth-34264DiVA: diva2:420015
Public defence
2011-06-13, Sal F3, Lindstedtsvagen 26. KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20110530

Available from: 2011-05-30 Created: 2011-05-30 Last updated: 2012-09-26Bibliographically approved

Open Access in DiVA

ThesisRodrigoParra.pdf(596 kB)427 downloads
File information
File name FULLTEXT01.pdfFile size 596 kBChecksum SHA-512
210fa9c63e5d0fa18af9c1bee005fea4d46e96c880575eae6a4274ae2d54c8c8cbb89e39fdce871764a101a887612fcfcefe7200ab99dbdf6e84982a3b68b4b8
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Parra, Rodrigo
By organisation
Mathematics (Dept.)
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 427 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 148 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf