Change search
ReferencesLink to record
Permanent link

Direct link
Synchronous Reluctance Machine (SynRM) in Variable Speed Drives (VSD) Applications
KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
2011 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

This thesis is comprehensively dedicated to the theoretical and experimental reevaluation of the Synchronous Reluctance Machine (SynRM). A simple approach to derive the SynRM main characteristics and behavior is followed. An introduction to an evaluation of the different control strategies in is given. Finding suitable rotor geometry for the SynRM has been a subject for major investigation since 1923. This thesis will investigate the interior barrier rotor structure of the SynRM using the Finite Element Method (FEM) based sensitivity analysis. The Permanent Magnet assisted SynRM (PMaSynRM) is studied. The main aim here is to address accurately, qualitatively and quantitatively the main characteristics of such a machine. A heat-run test has been done on a prototyped SynRM and its corresponding IM and Interior Permanent Magnet (IPM) Machine to investigate the potential of the SynRM, under variable speed drive (VSD) supply conditions. This gives the state-ofart based on these measurements on the prototype SynRM and benchmarks its performance. The main behavior and characteristics of an anisotropic structure, suitable for high performance SynRM rotor geometry design, is distinguished and discussed. The carefully selected general rotor shape and some optimum distribution rules are used to develop a novel FEM-aided fast rotor design optimization for SynRM. Torque ripple minimization of SynRM is discussed. This is done by the development of a general method that minimizes the ripple independent of the stator structure. The torque ripple and interconnection to iron losses are briefly discussed. Based on these design tools, a design that is a compromise between the final machine?s performance and simplicity of the rotor structure is studied as the improved machine design. The fine tuned most promising design is prototyped and its performance compared with IM. Naturally, to have an anisotropic structure the q-axis flux must be blocked and simultaneously the d-axis flux must flow smoothly. One possibility is to align the barrier edges along the d-axis natural flux lines in the solid rotor. A prototype of the final optimized machine design SynRM is manufactured. The performance of this machine is measured and compared with the improved machine design. The effect of the number of poles on SynRM performance is discussed. Some of the most important secondary effects in SynRM are studied. Skew and torque quality, the possible effects of alternative voltage or current source supplies on torque and iron losses, the start-up and short-circuit locked rotor tests performed on the standard IM and the prototype SynRM and the effect of eccentricity are investigated. An overview comparison between IM and SynRM is given. For this purpose, a high performance rotor structure for SynRM with standard sizes of 3kW, 15kW and 90kW is designed. The thermal performance of the SynRM is discussed by analyzing the measured machine temperatures. A detailed picture regarding the thermal performance of the SynRM machine is presented. A full scale performance evaluation of the SynRM in comparison to its counterpart the IM is given. All IM and SynRM motors have the same standard stator for each size. The MTPA control strategy is used. Finally, all reported measurements in this thesis are summarized and analyzed.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. , xviii, 260 p.
TRITA-EE, ISSN 1653-5146 ; 2011:038
Keyword [en]
Synchronous Reluctance Machine (SynRM), Torque, Torque Ripple, Design, Optimization, FEM, Control, Standard Size, Measurement, Performance Comparison, Induction Machine (IM), Interior Permanent Magnet Machine (IPM), Variable Speed Drive (VSD), General Purpose (GP), Field Oriented Control (FOC), Direct Torque Control (DTC), Heat Run, Test, Thermal, Operation Diagram, Circle Diagram
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-33804ISBN: 978-91-7415-972-1 (print)OAI: diva2:417890
Public defence
2011-05-27, sal F3, Lindstedtsvägen 26, KTH, Stockholm, 13:15 (English)

QC 20110518

Available from: 2011-05-18 Created: 2011-05-18 Last updated: 2015-09-18Bibliographically approved

Open Access in DiVA

fulltext(16116 kB)665 downloads
File information
File name FULLTEXT01.pdfFile size 16116 kBChecksum SHA-512
Type fulltextMimetype application/pdf
Spikblad(187 kB)111 downloads
File information
File name FULLTEXT02.pdfFile size 187 kBChecksum SHA-512
Type spikbladMimetype application/pdf

Search in DiVA

By author/editor
Rajabi Moghaddam, Reza
By organisation
Electrical Machines and Power Electronics (closed 20110930)
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 778 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 4578 hits
ReferencesLink to record
Permanent link

Direct link