Change search
ReferencesLink to record
Permanent link

Direct link
Microstructure evolution of Ti3SiC2 compound cathodes during reactive cathodic arc evaporation
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-4898-5115
Show others and affiliations
2011 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 29, no 3, 031601- p.Article in journal (Refereed) Published
Abstract [en]

The microstructure evolution and compositional variation of Ti3SiC2 cathode surfaces during reactive cathodic arc evaporation are presented for different process conditions. The results show that phase decomposition takes place in the near-surface region, resulting in a 5-50 mu m thick converted layer that is affected by the presence of nitrogen in the deposition chamber. This layer consists of two different sublayers, i.e., 1-20 mu m thick top layer with a melted and resolidified microstructure, followed by a 4-30 mu m thick transition layer with a decomposed microstructure. The converted layer contains a polycrystalline TiCx phase and trace quantities of Si-rich domains with Ti5Si3(C) at their interface. The arc discharge causes Si redistribution in the two regions of the layer, whose Si/(Ti+Si) ratio is higher in the top region and lower in the transition region compared to the virgin material.

Place, publisher, year, edition, pages
American Vacuum Society , 2011. Vol. 29, no 3, 031601- p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-68016DOI: 10.1116/1.3569052ISI: 000289689000021OAI: oai:DiVA.org:liu-68016DiVA: diva2:415232
Available from: 2011-05-06 Created: 2011-05-06 Last updated: 2016-08-31
In thesis
1. Microstructure evolution of Ti-based and Cr cathodes during arc discharging and its impact on coating growth
Open this publication in new window or tab >>Microstructure evolution of Ti-based and Cr cathodes during arc discharging and its impact on coating growth
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores the microstructure evolution of cathodes with various material compositions and grain sizes during cathodic arc evaporation processes as well as the impact on the arc movement, and the microstructure and properties of the deposited nitride coatings. The studied cathode material systems include conventionally metal forged Ti and Ti -Si cathodes, novel Ti3SiC2 MAX-phase cathodes, and dedicatedly designed powder-metallurgical Ti-Si and Cr cathodes with different grain size. The microstructure and chemical composition of the virgin and arced cathodes together with the microstructure and mechanical properties of the deposited coatings were analyzed with various characterization techniques, including x-ray diffractometry, x-ray photoelectron spectroscopy, elastic recoil detection analysis, scanning electron microscopy, focused ion beam sample preparation technique, transmission electron microscopy, energy dispersive x-ray, electron energy loss spectroscopy, and nanoindentation.

In general, a converted layer forms on the cathode surfaces during cathodic arc evaporation. The thickness, the microstructure and the chemical composition of such layer are dependent on the composition and the grain size of the virgin cathodes, the nitrogen pressure, and the cathode fabrication methods.

For Ti based materials, the converted layer is 5-12 μm thick and consists of nanosized nitrided grains caused by the high reactivity of Ti to the ambient nitrogen gas. In comparison, the Cr cathode is covered with a 10-15 μm converted layer with micrometer/sub-micrometer sized grains. Only very limited amounts of nitrogen are detected within the layer due to the low reactivity of Cr to nitrogen.

For Ti-Si cathodes, the existence of multiple phases of Ti and Ti5Si3 with different work function renders preferential arc erosion on the Ti5Si3 phase during discharging. The preferential erosion generates higher roughness of the Ti-Si cathode surface compared with Ti. By increasing the grain size of the virgin Ti-Si cathodes from ~8 μm to ~620 μm, the average roughness  increases from 1.94±0.13 μm to 91±14 μm due to the amplified impact of preferential erosion of the enlarged Ti5Si3 grains. The variation of the preferential erosion affects the arc movement, the deposition rate, and the macroparticle distribution of the deposited Ti-Si-N coatings.

A novel Ti3SiC2 MAX phase is used as cathode material for the growth of Ti-Si-C-N coating. During arcing, the cathode surface forms a converted layer with two sublayers, consisting of a several-micrometer region with a molten and resolidified microstructure followed by a region with a decomposed microstructure. The microstructure and hardness of the deposited Ti -Si-C-N coatings is highly dependent on the wide range of coating compositions attained. In the coatings with abundance of N, the combined presence of Si and C strongly disturbs cubic phase growth and compromises their mechanical strength. At a nitrogen pressure of 0.25-0.5 Pa, 45-50 GPa superhard (Ti,Si)(C,N) coatings with a nanocrystalline feathered structure were obtained.

By increasing the grain size of the elemental Cr cathodes from ~10 μm and ~300 μm, the grain structure of the converted layer on the cathode surface varies from equiaxed grains to laminated grains after evaporating in a nitrogen atmosphere. When evaporated with a stationary fixture, the worn Cr cathode surface contains an organized pattern of deep ditches in the surface. The formation of such patterns is enhanced by increasing the cathode grain size. The fixture movement, which is either stationary or single rotating, affects the phase composition, the droplet density and the microstructure of the deposited Cr-N coatings, which consequently determines the mechanical properties of the coatings.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 55 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1537
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-96790 (URN)978-91-7519-539-1 (print) (ISBN)
Public defence
2013-09-20, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2013-08-27 Created: 2013-08-27 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

fulltext(955 kB)330 downloads
File information
File name FULLTEXT04.pdfFile size 955 kBChecksum SHA-512
3e11e957b251f0241c356b2b87833a02a5bf45e61b289b4bd956e00be400085032782e4480e07ebb35f4f6c4e189463b63beda68707c08810d92a3f503f18457
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhu, JianqiangGhafoor, NaureenGreczynski, GrzegorzHultman, LarsRosén, JohannaOdén, Magnus
By organisation
Nanostructured MaterialsThe Institute of TechnologyThin Film Physics
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 330 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 356 hits
ReferencesLink to record
Permanent link

Direct link