Change search
ReferencesLink to record
Permanent link

Direct link
Spatial Quantum Beats in Vibrational Resonant Inelastic Soft X-Ray Scattering at Dissociating States in Oxygen
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).ORCID iD: 0000-0003-2729-0290
Show others and affiliations
2011 (English)In: Physical Review Letters, ISSN 0031-9007, Vol. 106, 153004-153008 p.Article in journal (Refereed) Published
Abstract [en]

Resonant inelastic soft x-ray scattering (RIXS) spectra excited at the 1σg→3σu resonance in gas-phase O2 show excitations due to the nuclear degrees of freedom with up to 35 well-resolved discrete vibronic states and a continuum due to the kinetic energy distribution of the separated atoms. The RIXS profile demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the atoms separate. Thomson scattering strongly affects both the spectral profile and the scattering anisotropy.

Place, publisher, year, edition, pages
2011. Vol. 106, 153004-153008 p.
National Category
Theoretical Chemistry
URN: urn:nbn:se:kth:diva-32876DOI: 10.1103/PhysRevLett.106.153004ISI: 000289525300005ScopusID: 2-s2.0-79960623604OAI: diva2:412704
Swedish e‐Science Research Center
QC 20110426 QC 20110512Available from: 2011-04-26 Created: 2011-04-26 Last updated: 2012-05-24Bibliographically approved
In thesis
1. Spontaneous and stimulated X-ray Raman scattering
Open this publication in new window or tab >>Spontaneous and stimulated X-ray Raman scattering
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The present thesis is devoted to theoretical studies of resonant X-ray scattering and propagation of strong X-ray pulses. In the first part of the thesis the nuclear dynamics of different molecules is studied using resonant X-ray Raman and resonant Auger scattering techniques. We show that the shortening of the scattering duration by the detuning results in a purification of the Raman spectra from overtones and soft vibrational modes. The simulations are in a good agreement with measurements, performed at the MAX-II and the Swiss Light Source with vibrational resolution. We explain why the scattering to the ground state nicely displays the vibrational structure of liquid acetone in contrast to excited final state. Theory of resonant X-ray scattering by liquids is developed. We show that, contrary to aqueous acetone, the environmental broadening in pure liquid acetone is twice smaller than the broadening by soft vibrational modes significantly populated at room temperature. Similar to acetone, the "elastic" band of X-ray Raman spectra of molecular oxygen is strongly affected by the Thomson scattering. The Raman spectrum demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the oxygen atoms separate. It is found that the vibrational scattering anisotropy caused by the interference of the "inelastic" Thomson and resonant scattering channels in O2. A new spin selection rule is established in inelastic X-ray Raman spectra of O2. It is shown that the breakdown of the symmetry selection rule based on the parity of the core hole, as the core hole and excited electron swap parity. Multimode calculations explain the two thresholds of formation of the resonant Auger spectra of the ethene molecule by the double-edge structure of absorption spectrum caused by the out-of- and in-plane modes. We predict the rotational Doppler effect and related broadening of X-ray photoelectron and resonant Auger spectra, which has the same magnitude as its counterpart-the translational Doppler effect. The second part of the thesis explores the interaction of the medium with strong X-ray free-electron laser (XFEL) fields. We perform simulations of nonlinear propagation of femtosecond XFEL pulses in atomic vapors by solving coupled Maxwell's and density matrix equations. We show that self-seeded stimulated X-ray Raman scattering strongly influences the temporal and spectral structure of the XFEL pulse. The generation of Stokes and four-wave mixing fields starts from the seed field created during pulse propagation due to the formation of extensive ringing pattern with long spectral tail. We demonstrate a compression into the attosecond region and a slowdown of the XFEL pulse up to two orders of magnitude. In the course of pulse propagation, the Auger yield is strongly suppressed due to the competitive channel of stimulated emission. We predict a strong X-ray fluorescence from the two-core-hole states of Ne created in the course of the two-photon X-ray absorption.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. viii, 71 p.
Trita-BIO-Report, ISSN 1654-2312 ; 2011:8
resonant X-ray scattering, resonant Auger scattering, rotational Doppler broadening, XFEL pulse
National Category
Atom and Molecular Physics and Optics Analytical Chemistry
urn:nbn:se:kth:diva-32859 (URN)978-91-7415-925-7 (ISBN)
Public defence
2011-05-13, FA32, AlbaNova, Stockholm, 10:00 (English)
QC 20110426Available from: 2011-04-26 Created: 2011-04-21 Last updated: 2011-11-23Bibliographically approved

Open Access in DiVA

fulltext(625 kB)193 downloads
File information
File name FULLTEXT01.pdfFile size 625 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sun, Yu-PingRinkevicius, ZilvinasGel'mukhanov, Faris
By organisation
Theoretical Chemistry (closed 20110512)
In the same journal
Physical Review Letters
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 193 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 85 hits
ReferencesLink to record
Permanent link

Direct link