Change search
ReferencesLink to record
Permanent link

Direct link
Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification - A multi-vendor study
Vrije University Amsterdam Medical Centre.
Vrije University Amsterdam Medical Centre.
Royal Brompton Hospital.
Skane University Hospital.
Show others and affiliations
2011 (English)In: JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, ISSN 1097-6647, Vol. 13Article in journal (Refereed) Published
Abstract [en]

Purpose: Eddy current induced velocity offsets are of concern for accuracy in cardiovascular magnetic resonance (CMR) volume flow quantification. However, currently known theoretical aspects of eddy current behavior have not led to effective guidelines for the optimization of flow quantification sequences. This study is aimed at identifying correlations between protocol parameters and the resulting velocity error in clinical CMR flow measurements in a multi-vendor study. Methods: Nine 1.5T scanners of three different types/vendors were studied. Measurements were performed on a large stationary phantom. Starting from a clinical breath-hold flow protocol, several protocol parameters were varied. Acquisitions were made in three clinically relevant orientations. Additionally, a time delay between the bipolar gradient and read-out, asymmetric versus symmetric velocity encoding, and gradient amplitude and slew rate were studied in adapted sequences as exploratory measurements beyond the protocol. Image analysis determined the worst-case offset for a typical great-vessel flow measurement. Results: The results showed a great variation in offset behavior among scanners (standard deviation among samples of 0.3, 0.4, and 0.9 cm/s for the three different scanner types), even for small changes in the protocol. Considering the absolute values, none of the tested protocol settings consistently reduced the velocity offsets below the critical level of 0.6 cm/s neither for all three orientations nor for all three scanner types. Using multilevel linear model analysis, oblique aortic and pulmonary slices showed systematic higher offsets than the transverse aortic slices (oblique aortic 0.6 cm/s, and pulmonary 1.8 cm/s higher than transverse aortic). The exploratory measurements beyond the protocol yielded some new leads for further sequence development towards reduction of velocity offsets; however those protocols were not always compatible with the time-constraints of breath-hold imaging and flow-related artefacts. Conclusions: This study showed that with current systems there was no generic protocol which resulted into acceptable flow offset values. Protocol optimization would have to be performed on a per scanner and per protocol basis. Proper optimization might make accurate (transverse) aortic flow quantification possible for most scanners. Pulmonary flow quantification would still need further (offline) correction.

Place, publisher, year, edition, pages
Taylor and Francis / BioMed Central , 2011. Vol. 13
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-67368DOI: 10.1186/1532-429X-13-18ISI: 000288862600001OAI: diva2:409706
This is an electronic version of an article published in: Marijn P Rolf, Mark B M Hofman, Pete rD Gatehouse, Karin Markenroth-Bloch, Martijn W Heymans, Tino Ebbers, Martin J Graves, John J Totman, Beat Werner, Albert C van Rossum, Philip J Kilner and Rob M Heethaar, Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification - A multi-vendor study, 2011, JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, (13). JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE is available online at informaworldTM: Licensee: Taylor & Francis / BioMed Central from: 2011-04-11 Created: 2011-04-11 Last updated: 2013-09-03

Open Access in DiVA

fulltext(702 kB)171 downloads
File information
File name FULLTEXT01.pdfFile size 702 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Ebbers, Tino
By organisation
Center for Medical Image Science and Visualization, CMIVPhysiologyFaculty of Health SciencesApplied Thermodynamics and Fluid Mechanics
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 171 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 109 hits
ReferencesLink to record
Permanent link

Direct link