Change search
ReferencesLink to record
Permanent link

Direct link
Fingerprint Image Quality Estimation and its Application to Multi-Algorithm Verification
Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
Universidad Autonoma de Madrid.
Show others and affiliations
2006 (English)Report (Other academic)
Abstract [en]

Recently, image quality awareness has been found to increase recognition rates and to supportdecisions in multimodal authentication systems significantly. Nevertheless, automatic quality assessmentis still an open issue, especially with regard to biometric authentication tasks. Here we analyze theorientation tensor of fingerprint images with a set of symmetry descriptors, in order to detect fingerprintimage quality impairments like noise, lack of structure, blur, etc. Allowed classes of local shapes area priori application information for the proposed quality measures, therefore no training or explicitimage reference information is required. Our quality assessment method is compared to an existingautomatic method and a human opinion in numerous experiments involving several public databases.Once the quality of an image is determined, it can be exploited in several ways, one of which is toadapt fusion parameters in a monomodal multi-algorithm environment, here a number of fingerprintrecognition systems. In this work, several trained and non-trained fusion schemes applied to the scoresof these matchers are compared. A Bayes-based strategy for combining experts with weights on theirpast performances, able to readapt to each identity claim based on the input quality is developed andevaluated. To show some of the advantages of quality-driven multi-algorithm fusion, such as boostingrecognition rates, increasing computational efficiency, etc., a novel cascade fusion and simple fusionrules are employed in comparison as well.

Place, publisher, year, edition, pages
Halmstad: School of Information Science, Computer and Electrical Engineering (IDE), Halmstad University , 2006. , 28 p.
Keyword [en]
structure tensor, orientation fields, biometrics, fingerprints, quality assessment, filtering, symmetry descriptors, simple fusion schemes, cascaded fusion, adaptive fusion, Bayesian statistics
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:hh:diva-14931OAI: oai:DiVA.org:hh-14931DiVA: diva2:408390
Available from: 2011-04-04 Created: 2011-04-04 Last updated: 2015-09-29Bibliographically approved

Open Access in DiVA

fulltext(1295 kB)1309 downloads
File information
File name FULLTEXT01.pdfFile size 1295 kBChecksum SHA-512
0059dbb38104ac93f8877a140e1fe38d21606b404fa819ddde08b9707310590d7a0f65084fbf970d7b21c50de9f423ffd02b5228aa3a670c6f830066daf8c992
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Fronthaler, HartwigKollreider, KlausBigun, JosefAlonso-Fernandez, Fernando
By organisation
Halmstad Embedded and Intelligent Systems Research (EIS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1309 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 179 hits
ReferencesLink to record
Permanent link

Direct link