In this paper we examine the quasiminimizing properties of radial power-type functions u(x) = vertical bar x vertical bar(alpha) in R-n. We find the optimal quasiminimizing constant whenever u is a quasiminfinizer of the p-Dirichlet integral, p not equal n, and similar results when u is a quasisub- and quasisuperminimizer. We also obtain similar results for log-powers when p = n.