Change search
ReferencesLink to record
Permanent link

Direct link
Cause-specific mortality time series analysis: a general method to detect and correct for abrupt data production changes
INSERM, CépiDc, Le Vésinet, France.
INSERM, CépiDc, Le Vésinet, France.
INSERM, CépiDc, Le Vésinet, France.
Erasmus MC, Department of Public Health, Rotterdam, The Netherlands.
Show others and affiliations
2011 (English)In: Population Health Metrics, ISSN 1478-7954, E-ISSN 1478-7954, Vol. 9, 52- p.Article in journal (Refereed) Published
Abstract [en]

BACKGROUND:

Monitoring the time course of mortality by cause is a key public health issue. However, several mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper proposes a statistical method that detects abrupt changes ("jumps") and estimates correction factors that may be used for further analysis.

METHODS:

The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data production change associated with each detected jump was evaluated through literature search or feedback obtained from the national data producers.For each plausible jump position, the statistical significance of the between-age and between-gender jump amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction factors were deduced from the results.

RESULTS:

Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.

CONCLUSION:

The method presented in this paper was successfully applied to a large set of causes of death and countries. The method appears to be an alternative to bridge coding methods when the latter are not systematically implemented because they are time- and resource-consuming.

Place, publisher, year, edition, pages
2011. Vol. 9, 52- p.
National Category
Public Health, Global Health, Social Medicine and Epidemiology
Identifiers
URN: urn:nbn:se:uu:diva-148276DOI: 10.1186/1478-7954-9-52ISI: 000300220000001PubMedID: 21929756OAI: oai:DiVA.org:uu-148276DiVA: diva2:401755
Available from: 2011-03-03 Created: 2011-03-03 Last updated: 2016-03-22Bibliographically approved

Open Access in DiVA

fulltext(379 kB)37 downloads
File information
File name FULLTEXT01.pdfFile size 379 kBChecksum SHA-512
b144549dd490051f85ac1217e6208f888c8d4740fdcf8f2b627a277b5b87b0c217fb60ab4166744a153c262b92ba0719bfacdfd3c7ceee52e1f49689f8f5c730
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Westerling, Ragnar
By organisation
Social Medicine
In the same journal
Population Health Metrics
Public Health, Global Health, Social Medicine and Epidemiology

Search outside of DiVA

GoogleGoogle Scholar
Total: 37 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 280 hits
ReferencesLink to record
Permanent link

Direct link