CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt185",{id:"formSmash:upper:j_idt185",widgetVar:"widget_formSmash_upper_j_idt185",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt186_j_idt190",{id:"formSmash:upper:j_idt186:j_idt190",widgetVar:"widget_formSmash_upper_j_idt186_j_idt190",target:"formSmash:upper:j_idt186:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Solving the quantum scattering problem for systems of two and three charged particlesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2011 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Physics, Stockholm University , 2011. , 64 p.
##### Keyword [en]

Scattering theory, three body scattering
##### National Category

Atom and Molecular Physics and Optics Other Physics Topics
##### Research subject

Physics
##### Identifiers

URN: urn:nbn:se:su:diva-54832ISBN: 978-91-7447-213-4 (print)OAI: oai:DiVA.org:su-54832DiVA: diva2:398414
##### Public defence

2011-03-23, FA32, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt536",{id:"formSmash:j_idt536",widgetVar:"widget_formSmash_j_idt536",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt542",{id:"formSmash:j_idt542",widgetVar:"widget_formSmash_j_idt542",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt548",{id:"formSmash:j_idt548",widgetVar:"widget_formSmash_j_idt548",multiple:true});
##### Funder

Swedish Research Council
##### Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Submitted. Paper 5: Manuscript.Available from: 2011-03-01 Created: 2011-02-17 Last updated: 2011-02-22Bibliographically approved
##### List of papers

A rigorous formalism for solving the Coulomb scattering problem is presented in this thesis. The approach is based on splitting the interaction potential into a finite-range part and a long-range tail part. In this representation the scattering problem can be reformulated to one which is suitable for applying exterior complex scaling. The scaled problem has zero boundary conditions at infinity and can be implemented numerically for finding scattering amplitudes. The systems under consideration may consist of two or three charged particles.

The technique presented in this thesis is first developed for the case of a two body single channel Coulomb scattering problem. The method is mathematically validated for the partial wave formulation of the scattering problem. Integral and local representations for the partial wave scattering amplitudes have been derived. The partial wave results are summed up to obtain the scattering amplitude for the three dimensional scattering problem. The approach is generalized to allow the two body multichannel scattering problem to be solved. The theoretical results are illustrated with numerical calculations for a number of models.

Finally, the potential splitting technique is further developed and validated for the three body Coulomb scattering problem. It is shown that only a part of the total interaction potential should be split to obtain the inhomogeneous equation required such that the method of exterior complex scaling can be applied. The final six-dimensional equation is reduced to a system of three dimensional equations using the full angular momentum representation. Such a system can be numerically implemented using the existing full angular momentum complex exterior scaling code (FAMCES). The code has been updated to solve the three body scattering problem.

1. Solving the Coulomb scattering problem using the complex-scaling method$(function(){PrimeFaces.cw("OverlayPanel","overlay398382",{id:"formSmash:j_idt584:0:j_idt589",widgetVar:"overlay398382",target:"formSmash:j_idt584:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Quantum Scattering with the Driven Schrödinger Approachand Complex Scaling$(function(){PrimeFaces.cw("OverlayPanel","overlay398388",{id:"formSmash:j_idt584:1:j_idt589",widgetVar:"overlay398388",target:"formSmash:j_idt584:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. The impact of sharp screening on the Coulomb scattering problem in three dimensions$(function(){PrimeFaces.cw("OverlayPanel","overlay398391",{id:"formSmash:j_idt584:2:j_idt589",widgetVar:"overlay398391",target:"formSmash:j_idt584:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Potential splitting approach to multichannel Coulomb scattering: the driven Schrödinger equation formulation$(function(){PrimeFaces.cw("OverlayPanel","overlay398396",{id:"formSmash:j_idt584:3:j_idt589",widgetVar:"overlay398396",target:"formSmash:j_idt584:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. A Potential-splitting approach to multichannel Coulomb scattering: the driven Schrödinger equation formulation II. Comparing an Adiabatic versus a Diabaticrepresentation. Application to the fundamental low-energy mutual neutralisationreaction H+ + H− ! H2 ! H(1) + H(n)$(function(){PrimeFaces.cw("OverlayPanel","overlay398401",{id:"formSmash:j_idt584:4:j_idt589",widgetVar:"overlay398401",target:"formSmash:j_idt584:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1347",{id:"formSmash:lower:j_idt1347",widgetVar:"widget_formSmash_lower_j_idt1347",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1349_j_idt1351",{id:"formSmash:lower:j_idt1349:j_idt1351",widgetVar:"widget_formSmash_lower_j_idt1349_j_idt1351",target:"formSmash:lower:j_idt1349:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});