Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polynomial Matrix Decompositions: Evaluation of Algorithms with an Application to Wideband MIMO Communications
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
2010 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The interest in wireless communications among consumers has exploded since the introduction of the "3G" cell phone standards. One reason for their success is the increasingly higher data rates achievable through the networks. A further increase in data rates is possible through the use of multiple antennas at either or both sides of the wireless links.

Precoding and receive filtering using matrices obtained from a singular value decomposition (SVD) of the channel matrix is a transmission strategy for achieving the channel capacity of a deterministic narrowband multiple-input multiple-output (MIMO) communications channel. When signalling over wideband channels using orthogonal frequency-division multiplexing (OFDM), an SVD must be performed for every sub-carrier. As the number of sub-carriers of this traditional approach grow large, so does the computational load. It is therefore interesting to study alternate means for obtaining the decomposition.

A wideband MIMO channel can be modeled as a matrix filter with a finite impulse response, represented by a polynomial matrix. This thesis is concerned with investigating algorithms which decompose the polynomial channel matrix directly. The resulting decomposition factors can then be used to obtain the sub-carrier based precoding and receive filtering matrices. Existing approximative polynomial matrix QR and singular value decomposition algorithms were modified, and studied in terms of decomposition quality and computational complexity. The decomposition algorithms were shown to give decompositions of good quality, but if the goal is to obtain precoding and receive filtering matrices, the computational load is prohibitive for channels with long impulse responses.

Two algorithms for performing exact rational decompositions (QRD/SVD) of polynomial matrices were proposed and analyzed. Although they for simple cases resulted in excellent decompositions, issues with numerical stability of a spectral factorization step renders the algorithms in their current form purposeless.

For a MIMO channel with exponentially decaying power-delay profile, the sum rates achieved by employing the filters given from the approximative polynomial SVD algorithm were compared to the channel capacity. It was shown that if the symbol streams were decoded independently, as done in the traditional approach, the sum rates were sensitive to errors in the decomposition. A receiver with a spatially joint detector achieved sum rates close to the channel capacity, but with such a receiver the low complexity detector set-up of the traditional approach is lost.

Summarizing, this thesis has shown that a wideband MIMO channel can be diagonalized in space and frequency using OFDM in conjunction with an approximative polynomial SVD algorithm. In order to reach sum rates close to the capacity of a simple channel, the computational load becomes restraining compared to the traditional approach, for channels with long impulse responses.

Place, publisher, year, edition, pages
2010. , p. 86
Series
UPTEC F, ISSN 1401-5757 ; 10 059
Keywords [en]
polynomial matrix decompositions, polynomial matrix, polynomial matrices, decomposition, approximate decomposition, mimo, wideband mimo, mimo-ofdm, spatial multiplexing, precoding, receive filtering, channel capacity
Identifiers
URN: urn:nbn:se:uu:diva-134389OAI: oai:DiVA.org:uu-134389DiVA, id: diva2:372294
Uppsok
Technology
Supervisors
Examiners
Available from: 2010-11-29 Created: 2010-11-25 Last updated: 2010-11-29Bibliographically approved

Open Access in DiVA

fulltext(4086 kB)2492 downloads
File information
File name FULLTEXT01.pdfFile size 4086 kBChecksum SHA-512
30e010879c324808577efba9933a9e2d275d5a75807b80d5840835b3741dcfb9c3b4fc4a3224a313df1a35460880ac8a3dbd578b0c29ff13ed4ed7c874c2d237
Type fulltextMimetype application/pdf

By organisation
Signals and Systems Group

Search outside of DiVA

GoogleGoogle Scholar
Total: 2492 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 869 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf