Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The WIMP capture process for dark stars in the early universe
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical Particle Physics.
2011 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 729, no 1, 51-1-51-11 p.Article in journal (Refereed) Published
Abstract [en]

The first stars to form in the universe may have been dark stars, powered by dark matter annihilation instead of nuclear fusion. The initial amount of dark matter gathered by the star gravitationally can sustain it only for a limited period of time. It has been suggested that capture of additional dark matter from the environment can prolong the dark star phase even to the present day. Here we show that this capture process is ineffective to prolong the life of the first generation of dark stars. We construct a Monte-Carlo simulation that follows each Weakly Interacting Massive Particle (WIMP) in the dark matter halo as its orbit responds to the formation and evolution of the dark star, as it scatters off the star's nuclei, and as it annihilates inside the star. A rapid depletion of the WIMPs on orbits that cross the star causes the demise of the first generation of dark stars. We suggest that a second generation of dark stars may in principle survive much longer through capture. We comment on the effect of relaxing our assumptions.

Place, publisher, year, edition, pages
The American Astronomical Society , 2011. Vol. 729, no 1, 51-1-51-11 p.
Keyword [en]
dark matter, stars, formation
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:kth:diva-25801DOI: 10.1088/0004-637X/729/1/51ISI: 000287255300051Scopus ID: 2-s2.0-79952174178OAI: oai:DiVA.org:kth-25801DiVA: diva2:359894
Funder
Swedish Research Council, 315-2004-6519
Note
QC 20101101 Uppdaterad från submitted till published (20110315).Available from: 2011-12-09 Created: 2010-11-01 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Dark matter in and around stars
Open this publication in new window or tab >>Dark matter in and around stars
2009 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

There is by now compelling evidence that most of the matter in the universe is in the form of dark matter, a form of matter quite different from the matter we experience in every day life. The gravitational effects of this dark matter have been observed in many different ways but its true nature is still unknown. In most models dark matter particles can annihilate with each other into standard model particles. The direct or indirect observation of such annihilation products could give important clues for the dark matter puzzle. For signals from dark matter annihilations to be detectable, typically high dark matter densities are required. Massive objects, such as stars, can increase the local dark matter density both via scattering off nucleons and by pulling in dark matter gravitationally as the star forms. Dark matter annihilations outside the star would give rise to gamma rays and this is discussed in the first paper. Furthermore dark matter annihilations inside the star would deposit energy inside the star which, if abundant enough, could alter the stellar evolution. Aspects of this are investigated in the second paper. Finally, local dark matter overdensities formed in the early universe could still be around today; prospects of detecting gamma rays from such clumps are discussed in the third paper.

Place, publisher, year, edition, pages
Stockholm: Universitetsservice US AB, 2009. x, 28 p.
Series
Trita-FYS, ISSN 0280-316X ; 2009:49
Keyword
Dark matter, early universe
National Category
Subatomic Physics
Identifiers
urn:nbn:se:kth:diva-11259 (URN)978-91-7415-430-6 (ISBN)
Presentation
2009-10-02, FA32, AlbaNova, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
Introduktionsdelen till en sammanläggningsavhandlingAvailable from: 2009-10-13 Created: 2009-10-12 Last updated: 2010-11-01Bibliographically approved
2. Studies of dark matter in and around stars
Open this publication in new window or tab >>Studies of dark matter in and around stars
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is by now compelling evidence that most of the matter in the Universe is in the form of dark matter, a form of matter quite different from the matter we experience in every day life. The gravitational effects of this dark matter have been observed in many different ways but its true nature is still unknown. In most models, dark matter particles can annihilate with each other into standard model particles; the direct or indirect observation of such annihilation products could give important clues for the dark matter puzzle. For signals from dark matter annihilations to be detectable, typically high dark matter densities are required. Massive objects, such as stars, can increase the local dark matter density both via scattering off nucleons and by pulling in dark matter gravitationally as a star forms. Annihilations within this kind of dark matter population gravitationally bound to a star, like the Sun, give rise to a gamma ray flux. For a star which has a planetary system, dark matter can become gravitationally bound also through gravitational interactions with the planets. The interplay between the different dark matter populations in the solar system is analyzed, shedding new light on dark matter annihilations inside celestial bodies and improving the predicted experimental reach. Dark matter annihilations inside a star would also deposit energy in the star which, if abundant enough, could alter the stellar evolution. This is investigated for the very first stars in the Universe. Finally, there is a possibility for abundant small scale dark matter overdensities to have formed in the early Universe. Prospects of detecting gamma rays from such minihalos, which have survived until the present day, are discussed.

Abstract [sv]

Kosmologiska observationer har visat att större delen av materian i universum består av mörk materia, en form av materia med helt andra egenskaper än den vi upplever i vardagslivet. Effekterna av denna mörka materia har observerats gravitationellt på många olika sätt men vad den egentligen består av är fortfarande okänt. I de flesta modeller kan mörk materia-partiklar annihilera med varandra till standardmodellpartiklar. Att direkt eller indirekt observera sådana annihilationsprodukter kan ge viktiga ledtrådar om vad den mörka materian består av. För att kunna detektera sådana signaler fordras typiskt höga densiteter av mörk materia. Stjärnor kan lokalt öka densiteten av mörk materia, både via spridning mot atomkärnor i stjärnan och genom den ökande gravitationskraften i samband med att en stjärna föds. Annihilationer inom en sådan mörk materia-population gravitationellt bunden till en stjärna, till exempel solen, ger upphov till ett flöde av gammastrålning, som beräknas. För en stjärna som har ett planetsystem kan mörk materia även bli infångad genom gravitationell växelverkan med planeterna. Samspelet mellan de två mörk materia-populationerna i solsystemet analyseras, vilket ger nya insikter om mörk materia-annihilationer inuti himlakroppar och förbättrar de experimentella möjligheterna att detektera dem. Mörk materia-annihilationer inuti en stjärna utgör också en extra energikälla för stjärnan, vilket kan påverka stjärnans utveckling om mörk materia-densiteten blir tillräckligt stor. Denna effekt undersöks för de allra första stjärnorna i universum. Slutligen finns det också en möjlighet att det i det tidiga universum skapades mörk materia-ansamlingar som fortfarande finns kvar idag. Utsikterna att upptäcka dessa genom mätning av gammastrålning diskuteras.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. x, 73 p.
Series
Trita-FYS, ISSN 0280-316X ; 2012:04
Keyword
Dark matter, particle astrophysics
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-64245 (URN)987-91-7501-251-3 (ISBN)
Public defence
2012-02-17, FB42, AlbaNova universitetscentrum, Roslagstullsbacken 21, AlbaNova, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20120130Available from: 2012-01-30 Created: 2012-01-24 Last updated: 2012-01-30Bibliographically approved

Open Access in DiVA

fulltext(283 kB)75 downloads
File information
File name FULLTEXT01.pdfFile size 283 kBChecksum SHA-512
c0f8ac9cf49ecfcac3292884adb7d4f9614e92f90860441430778a2daf049ef9666ec62a7482a728b7b85852c2905babffb2cd9ca019687e8a8a0f11cc3d3aad
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusAstrophysical JournalArxiv

Search in DiVA

By author/editor
Sivertsson, Sofia
By organisation
Theoretical Particle Physics
In the same journal
Astrophysical Journal
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 75 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 194 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf