Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Real estate significantly influences economic growth, with prices shaped by utility attributes and buyer willingness, making price dynamics crucial for stakeholders. In nascent real estate markets like Dar es Salaam, where data is less integrated and transactions often involve informal agents, creating accurate price indices is challenging, and methodologies may need to incorporate both formal and informal data sources, potentially with the help of machine learning techniques to improve predictions. Nevertheless, the Dar es Salaam housing market lacks indices, despite the existence of data sources, particularly formal and informal real estate agents. The main objective of this doctoral thesis is to examine the adoption of the best method for developing a house price index (HPI) for Dar es Salaam, Tanzania's most active real estate submarket, which shares operational characteristics with other regional submarkets in the country.
This thesis consists of four papers, utilising a survey strategy and cross-sectional data from real estate agents. It examines the feasibility of using informal real estate agents' data to establish a house price index in Dar es Salaam, the impact of spatial dependence on the index, the impact of informal and formal agents' data sources on the index and the use of machine learning techniques for property valuation, aiming to highlight its feasibility for house pricing.
The findings of the study indicate that the hedonic approach, with the informal agents’ data, appears to yield a useful house price index that shows a steady but rising trend (paper I). The hedonic pricing model for Dar es Salaam may not require spatial considerations due to data limitations, suggesting that proximity factors and spatial dependence may not significantly improve the house price index (paper II). Since the resulting price trend seems to be consistent with both formal and informal real estate agents, the house price index can be constructed using data from both sources. Nevertheless, incorporating data from various agent categories improves the index, likely due to the larger sample size (paper III). Despite challenges with informal market data, machine learning techniques can effectively estimate housing worth, with some methods consistently outperforming others (paper IV).
The study poses several implications for various stakeholders. The hedonic modelling approach is effective for developing house price indices in Dar es Salaam's nascent housing market. Policies must encourage informal agents to share their property transaction data. This could be through mandating the digitisation of informal transactions. Policies should also encourage standardised data formats and reporting for both formal and informal housing transactions to ensure consistency and reliability in integrating datasets into machine learning models. Data privacy regulations must ensure secure and ethical handling of sensitive information from individuals and informal agents.
Abstract [sv]
Fastigheter påverkar avsevärt ekonomisk tillväxt, med priser som formas av nyttoegenskaper och köparens vilja, vilket gör prisdynamiken avgörande för intressenter. På begynnande fastighetsmarknader som Dar es Salaam, där data är mindre integrerade och transaktioner ofta involverar informella agenter, är det en utmaning att skapa korrekta prisindex, och metoder kan behöva införliva både formella och informella datakällor, eventuellt med hjälp av maskininlärningstekniker för att förbättra förutsägelser. Ändå saknar bostadsmarknaden i Dar es Salaam index, trots att det finns datakällor, särskilt formella och informella fastighetsmäklare. Huvudsyftet med denna doktorsavhandling är att undersöka antagandet av den bästa metoden för att utveckla ett husprisindex (HPI) för Dar es Salaam, Tanzanias mest aktiva fastighetsdelmarknad, som delar operativa egenskaper med andra regionala delmarknader i landet.
Detta examensarbete består av fyra artiklar, som använder en undersökningsstrategi och tvärsnittsdata från fastighetsmäklare. Den undersöker genomförbarheten av att använda informella fastighetsmäklares data för att upprätta ett husprisindex i Dar es Salaam, effekten av rumsligt beroende av indexet, effekten av informella och formella agenters datakällor på indexet och användningen av maskininlärningstekniker för fastighetsvärdering, i syfte att belysa dess genomförbarhet för husprissättning.
Resultaten av studien indikerar att det hedoniska tillvägagångssättet, med de informella agenternas data, verkar ge ett användbart husprisindex som visar en stadig men stigande trend (artikel I). Den hedoniska prissättningsmodellen för Dar es Salaam kanske inte kräver rumsliga överväganden på grund av databegränsningar, vilket tyder på att närhetsfaktorer och rumsligt beroende kanske inte avsevärt förbättrar husprisindex (artikel II). Eftersom den resulterande prisutvecklingen verkar överensstämma med både formella och informella fastighetsmäklare, kan husprisindex konstrueras med hjälp av data från båda källorna. Ändå förbättras indexet genom att införliva data från olika agentkategorier, troligen på grund av den större urvalsstorleken (artikel III). Trots utmaningar med informell marknadsdata kan maskininlärningstekniker effektivt uppskatta bostadsvärde, med vissa metoder som konsekvent överträffar andra (artikel IV).
Studien har flera konsekvenser för olika intressenter. Den hedoniska modelleringsmetoden är effektiv för att utveckla husprisindex på Dar es Salaams begynnande bostadsmarknad. Policyer måste uppmuntra informella agenter att dela sina fastighetstransaktionsdata. Detta kan vara genom att kräva digitalisering av informella transaktioner. Policyer bör också uppmuntra standardiserade dataformat och rapportering för både formella och informella bostadstransaktioner för att säkerställa konsekvens och tillförlitlighet vid integrering av datauppsättningar i maskininlärningsmodeller. Datasekretessbestämmelser måste säkerställa säker och etisk hantering av känslig information från individer och informella agenter.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 40
Series
TRITA-ABE-DLT ; 2513
Keywords
Nascent housing markets, Informal and formal real estate agents, House price index, Spatial dependence, Machine learning, Nya bostadsmarknader, Informella och formella fastighetsmäklare, Husprisindex, Spatial dependence, Machine learning
National Category
Business Administration
Research subject
Real Estate and Construction Management
Identifiers
urn:nbn:se:kth:diva-363131 (URN)978-91-8106-300-4 (ISBN)
Public defence
2025-05-26, At 11:00 am Tanzania time: DMTC Building, Ardhi University, Dar es Salaam, Tanzania, At 10 am Swedish time: public video conference link https://us02web.zoom.us/j/83183762796?pwd=dAoGl3cnyIg1f9plRHYj1Pcb3jiTwn.1, Dar es Salaam, 10:00 (English)
Opponent
Supervisors
Funder
Sida - Swedish International Development Cooperation Agency
Note
QC 20250507
2025-05-072025-05-062025-05-15Bibliographically approved