Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bimodal pilot study on inner speech decoding reveals the potential of combining EEG and fMRI
Luleå tekniska universitet, EISLAB.ORCID iD: 0000-0002-6756-0147
Luleå tekniska universitet, EISLAB.ORCID iD: 0000-0002-3785-8380
Luleå tekniska universitet, EISLAB.ORCID iD: 0000-0001-8532-0895
Luleå tekniska universitet, EISLAB.ORCID iD: 0000-0003-0221-8268
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper presents the first publicly available bimodal electroencephalography (EEG) / functional magnetic resonance imaging (fMRI) dataset and an open source benchmark for inner speech decoding. Decoding inner speech or thought (expressed through a voice without actual speaking); is a challenge with typical results close to chance level. The dataset comprises 1280 trials (4 subjects, 8 stimuli = 2 categories * 4 words, and 40 trials per stimuli) in each modality. The pilot study reports for the binary classification, a mean accuracy of 71.72\% when combining the two modalities (EEG and fMRI), compared to 62.81% and 56.17% when using EEG, resp. fMRI alone. The same improvement in performance for word classification (8 classes) can be observed (30.29% with combination, 22.19%, and 17.50% without). As such, this paper demonstrates that combining EEG with fMRI is a promising direction for inner speech decoding.

Keywords [en]
brain–computer interface (BCI), inner speech, electroencephalography (EEG), functional magnetic resonance imaging (fMRI), bimodal dataset
National Category
Computer graphics and computer vision
Research subject
Machine Learning
Identifiers
URN: urn:nbn:se:mau:diva-75697DOI: 10.1101/2022.05.24.492109OAI: oai:DiVA.org:mau-75697DiVA, id: diva2:1955480
Available from: 2025-04-30 Created: 2025-04-30 Last updated: 2025-05-07Bibliographically approved

Open Access in DiVA

fulltext(1636 kB)11 downloads
File information
File name FULLTEXT01.pdfFile size 1636 kBChecksum SHA-512
e3d94e76e9e88a5593eca349134937bb0fbe2389fe2669bedfcd731477219704c9b42da0e6705e8f3197fb0dd72f71de42f23975cd0727e2886dd81ddee7ec5b
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Simistira Liwicki, FoteiniGupta, VibhaSaini, RajkumarDe, KanjarAbid, NosheenRakesh, SumitLiwicki, Marcus
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar
Total: 13 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf