Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
End-to-End Detector Optimization with Diffusion Models: A Case Study in Sampling Calorimeters
Institute for Experimental Particle Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.ORCID iD: 0009-0007-5218-8227
Institute for Experimental Particle Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.ORCID iD: 0009-0005-0289-5412
Institute for Experimental Particle Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.ORCID iD: 0000-0003-1644-7678
Dipartimento di Fisica e Astronomia, Università di Padova, Via F. Marzolo 8, 35131 Padova, Italy; INFN, Sezione di Padova-Via F. Marzolo 8, 35131 Padova, Italy.ORCID iD: 0009-0004-1790-8629
Show others and affiliations
2025 (English)In: Particles, E-ISSN 2571-712X, Vol. 8, no 2, article id 47Article in journal (Refereed) Published
Abstract [en]

Recent advances in machine learning have opened new avenues for optimizing detector designs in high-energy physics, where the complex interplay of geometry, materials, and physics processes has traditionally posed a significant challenge. In this work, we introduce the end-to-end. AI Detector Optimization framework (AIDO), which leverages a diffusion model as a surrogate for the full simulation and reconstruction chain, enabling gradient-based design exploration in both continuous and discrete parameter spaces. Although this framework is applicable to a broad range of detectors, we illustrate its power using the specific example of a sampling calorimeter, focusing on charged pions and photons as representative incident particles. Our results demonstrate that the diffusion model effectively captures critical performance metrics for calorimeter design, guiding the automatic search for a layer arrangement and material composition that align with known calorimeter principles. The success of this proof-of-concept study provides a foundation for the future applications of end-to-end optimization to more complex detector systems, offering a promising path toward systematically exploring the vast design space in next-generation experiments.

Place, publisher, year, edition, pages
MDPI, 2025. Vol. 8, no 2, article id 47
Keywords [en]
computational modeling, machine learning, diffusion model, calorimeter, particle detector, holistic optimization
National Category
Subatomic Physics
Research subject
Machine Learning
Identifiers
URN: urn:nbn:se:ltu:diva-112548DOI: 10.3390/particles8020047OAI: oai:DiVA.org:ltu-112548DiVA, id: diva2:1955180
Funder
Knut and Alice Wallenberg Foundation
Note

Validerad;2025;Nivå 1;2025-04-29 (u4);

Funding information see link: https://www.mdpi.com/2571-712X/8/2/47;

Fulltext license: CC BY

Available from: 2025-04-29 Created: 2025-04-29 Last updated: 2025-05-14Bibliographically approved

Open Access in DiVA

fulltext(820 kB)28 downloads
File information
File name FULLTEXT01.pdfFile size 820 kBChecksum SHA-512
03461e118ed2c342003a8d29ac797b4ae310b537113774cfdf78ea489e21a4b28f26ddd20d92d025d9a17b5eec8f1ef1c0829745808d19ab2e4ca4d18890df59
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Schmidt, KylianKota, Krishna NikhilKieseler, JanDe Vita, AndreaKlute, MarkusAbhishek, NAAehle, MaxAwais, MuhammadBreccia, AlessandroCarroccio, RiccardoChen, LongDorigo, TommasoGauger, Nicolas R.Lupi, EnricoNardi, FedericoNguyen, Xuan TungSandin, FredrikWillmore, JosephVischia, Pietro
By organisation
Embedded Internet Systems Lab
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 29 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 95 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf