Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reducing the set of considered scenarios in robust optimization of intensity-modulated proton therapy
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, Optimization and Systems Theory.ORCID iD: 0000-0003-2365-3867
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Robust optimization is a commonly employed method to mitigate uncertainties in the planning of intensity-modulated proton therapy (IMPT). In certain contexts, the large number of uncertainty scenarios makes the robust problem impractically expensive to solve. Recent developments in research on IMPT treatment planning indicate that the number of ideally considered error scenarios may continue to increase.In this paper, we therefore investigate methods that reduce the size of the scenario set considered during the robust optimization. Six cases of patients with non-small cell lung cancer are considered. First, we investigate the existence of an optimal subset of scenarios that needs to be considered during robust optimization, and perform experiments to see if the set can be found in a reasonable time and substitute for the full set of scenarios during robust IMPT optimization. We then consider heuristic methods to estimate this subset or find subsets with similar properties. Specifically, we select a subset of maximal diversity in terms of scenario-specific features such as the dose distributions and function gradients at the initial point. Finally, we consider adversarial methods as an alternative to solving the full robust problem and investigate the impact on computation times.The results indicate that the optimal subset can be well approximated by solving the robust IMPT problem with conventional methods. Of the methods designed to approximate it within a practically useful time frame, the results of the diversity-maximization methods indicate that they may perform better than a manual selection of scenarios based on the patient geometry. In addition, the adversarial approaches decreased the computation time by at least half compared to the conventional approach.

National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics, Optimization and Systems Theory
Identifiers
URN: urn:nbn:se:kth:diva-362865DOI: 10.48550/arXiv.2504.14227OAI: oai:DiVA.org:kth-362865DiVA, id: diva2:1955036
Note

QC 20250428

Available from: 2025-04-28 Created: 2025-04-28 Last updated: 2025-04-28Bibliographically approved
In thesis
1. Mitigating uncertainties in adaptive radiation therapy by robust optimization
Open this publication in new window or tab >>Mitigating uncertainties in adaptive radiation therapy by robust optimization
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The fractionated delivery of radiation therapy leads to discrepancies between the planning image and the patient geometry throughout the treatment course. Adaptive radiation therapy (ART) addresses this issue by modifying the plan based on additional image information acquired closer to the time of delivery. However, technologies used in ART introduce new uncertainties in the treatment modeling. This thesis deals with the mitigation of uncertainties that are introduced in the context of ART workflows.

The first two appended papers address mitigating uncertainty related to localizing the tumor and the relevant organs-at-risk (OARs). In Paper A, we consider phantom cases with isotropic, microscopic tumor infiltration around a visible tumor. We compare minimization of the expected value of the objective function to the conventional minimization of an objective function applied to a margin designed to contain the tumor with sufficient probability. The results show that the approach can improve the sparing of a nearby OAR, at the expense of increasing the total dose. In Paper B, we compare multiple formulations of the objective function under contour uncertainty, given a non-isotropic uncertainty model represented by a set of contour scenarios. At comparable tumor dose, margins derived from the scenarios outperform methods from clinical practice in terms of sparing OARs and limiting the total dose. In comparison, considering the scenarios explicitly, including minimizing the expected value of the objective function over the scenarios, spares the OARs further at the expense of total dose.

The three subsequent papers address motion-related uncertainty, which is particularly relevant in particle treatments. In Paper C, we investigate a robust optimization method that explicitly considers the radiation delivery’s time structure. It is applied to lung cancer cases with synthesized, irregular breathing motion, and the results indicate that it outperforms the conventional method that does not consider the time structure. In Paper D, we simulate the use of a real-time adaptive framework that re-optimizes the plan during delivery, based on the observed and anticipated patient motion. It is shown to have substantial dosimetric benefits, even under simplifying approximations that would facilitate an actual real-time implementation. In PaperE, we estimate the error associated with performing dose calculations that consider motion when the temporal resolution of the time-varying patient image is low. We apply a method to synthesize intermediate images and propose a temporal resolution required to mitigate the error. Finally, in Paper F, we address some of the computational issues introduced by the robust optimization methods from the other papers. We propose methods that reduce the number of scenarios considered during robust optimization to reduce the associated computation times.

Abstract [sv]

Vid fraktionerad strålbehandling administreras strålningen i mindre doser över flera behandlingstillfällen. Detta medför avvikelser mellan patientens faktiska anatomiska tillstånd vid varje enskild fraktion och den bild som använts för dosplanering. Adaptivstrålbehandling (ART) adresserar denna utmaning genom modifiering av behandlingsplanen utifrån ytterligare bildinformation som erhålls närmre inpå leverans av en enskild fraktion. Teknologier som används i ART introducerar dock nya osäkerheter i behandlingsmodelleringen. Denna avhandling undersöker hantering av de osäkerheter som uppstår i samband med arbetsflöden för ART.

Avhandlingens första två bifogade artiklar behandlar metoder som hanterar osäkerhet i lokaliseringen av tumören och berörda riskorgan. I Artikel A använder vi oss av fantomfallmed isotrop, mikroskopisk tumörinfiltration runt en synlig tumör. Vi jämförminimering av målfunktionens väntevärde med konventionell minimering av en målfunktiontillämpad på en marginal som är utformad för att innefatta tumören med högsannolikhet. Resultaten visar att metoden kan förbättra skyddet av ett närliggande riskorgan, på bekostnad av en ökad totaldos. I Artikel B jämför vi flera formuleringar av målfunktionen vid kontureringsosäkerhet, givet en icke-isotrop osäkerhetsmodellrepresenterad av en uppsättning konturscenarier. Vid jämförbar tumördos överträffar scenariobaserade marginaler metoder från klinisk praxis när det gäller att skonariskorgan och att begränsa totaldosen. Vidare visar sig metoder som explicit beaktarscenarierna var för sig, inklusive minimering av målfunktionens väntevärde övermängden scenarier, kunna skona riskorgan ytterligare på bekostnad av högre totaldos.

Därefter följer tre artiklar som behandlar rörelserelaterad osäkerhet, vilket är särskilt relevant vid partikelstrålning. I Artikel C undersöker vi en optimeringsmetod som uttryckligen tar hänsyn till tidsstrukturen i leveransen av strålning. Metoden tillämpas på lungcancerfall med syntetiserad, oregelbunden andningsrörelse, och resultaten indikeraratt den överträffar en konventionell metod som inte tar hänsyn till tidsstrukturen. I Artikel D simulerar vi användningen av en realtidsadaptiv metod som optimerar behandlingsplanen under leveransen baserat på observerad och förväntad patientrörelse. Metoden visar betydande dosimetriska fördelar, även under förenklande antaganden som skulle underlätta en faktisk realtidsimplementering. I Artikel E uppskattar vi feletvid dosberäkningar som beaktar rörelse, när tidsupplösningen i den tidsberoende patientbilden är låg. Vi tillämpar en metod för att syntetisera mellanliggande bilder och föreslår en tillräcklig tidsupplösning för att minska felet. Slutligen behandlar vi i Artikel F vissa beräkningsmässiga utmaningar som introducerasav optimeringsmetoderna i övriga artiklar. Vi föreslår metoder som minskar antalet scenarier som beaktas vid robust optimering, för att också minska mängden beräkningar.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. 190
Series
TRITA-SCI-FOU ; 2025:14
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics, Optimization and Systems Theory
Identifiers
urn:nbn:se:kth:diva-362868 (URN)978-91-8106-235-9 (ISBN)
Public defence
2025-05-28, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2025-04-28

Available from: 2025-04-28 Created: 2025-04-28 Last updated: 2025-04-29Bibliographically approved

Open Access in DiVA

fulltext(2628 kB)28 downloads
File information
File name FULLTEXT01.pdfFile size 2628 kBChecksum SHA-512
48f579853b2f1802e62ffb5ac6aeadb1c47b6025058fcee08a04f20c701affcf8a3355640600a145b00fae2dc78e3c6e15a955fa45373567348f2d192e7e1f11
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Bengtsson, Ivar
By organisation
Numerical Analysis, Optimization and Systems Theory
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 28 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf