Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
From Impact to Insight: Finite Element Modeling of Real-World Head Trauma
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Neuronic Engineering. (Division of Neuronic Engineering, KTH Royal Institute of Technology)ORCID iD: 0000-0003-2357-3795
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Traumatic head injuries represent a major global health burden, affecting up to 70 million people annually world-wide. To study head injury mechanisms and evaluate preventive measures, virtual, anatomically-detailed human surrogates, referred to as Human Body Models (HBMs), can be created using Finite Element (FE) modeling techniques. Such FE models can be used to computationally recreate real-world head traumas to study human response to impact and reveal injury mechanisms. However, since FE is an inherently heavy computational task, there are numerous modeling challenges associated with using FE analysis for this purpose: constitutive models need to be appointed to complex biological tissues, models need to be properly validated, the chosen approach should be feasible in terms of time, and so forth. This doctoral thesis aims to address a few of these difficulties.

This thesis is composed of four comprehensive studies, each related to the overall objective of developing new methodologies and models, and further developing existing ones, for in-depth FE reconstructions of real-world head trauma. To emphasize their applicability in head injury research, the four studies also feature in-depth reconstructions of real-world injurious events. In the first study, a male and female pedestrian HBM was developed based on an existing occupant HBM, along with an efficient framework for anthropometric personalization. In the second study, a framework for reconstructing head traumas of pedestrians and cyclists in real-world road traffic accidents was developed, validated and exemplified by reconstructing 20 real-world cases. In the third study, a material model for cranial bone was developed and validated, and used for predicting skull fractures in five fall accidents. Lastly, in the fourth study, the material model was applied to a subject-specific head model, used to conduct an in-depth reconstruction of a workplace fatality to assess the protective effect of construction helmets.

Together, these four studies highlight how in-depth FE reconstructions, involving geometrically personalized models of the human body, can provide head injury predictions with striking resemblance to real-world data. When conducted with care, such reconstructions can offer valuable insights into the complex dynamics of head trauma. They can be indispensable tools for evaluating injury prevention strategies, and can potentially be useful within the field of forensic medicine, as they may help open up for objectification of forensic evaluations.

Abstract [sv]

Traumatiska huvudskador utgör en stor folkhälsoutmaning, med en årlig förekomst som uppskattas till uppemot 70 miljoner fall världen över. För att studera mekanismerna bakom huvudskador kan virtuella, anatomiskt detaljerade mänskliga surrogatmodeller, eller humanmodeller (eng: Human Body Model, HBM), skapas med hjälp av Finita Element (FE) metoden. Sådana FE-modeller kan användas för att rekonstruera huvudtrauman från verkliga olycksfall numeriskt, för att i sin tur synliggöra skademekanismer bakom skall- och hjärnskador. Det finns dessvärre många utmaningar med att använda FE-analys för detta ändamål: materialmodeller måste formuleras för komplexa biologiska vävnader, FE modeller bör valideras, tillvägagångssättet bör vara tidseffektivt och så vidare. Denna doktorsavhandling ämnar ta itu med några av dessa svårigheter.

Avhandlingen består av fyra delstudier, som alla förhåller sig till det övergripande målet att utveckla nya metoder och modeller, samt vidareutveckla  befintliga, för FE-rekonstruktioner av verkliga huvudtrauman. För att belysa deras tillämpning i huvudskadeforskning, behandlar de fyra studierna även rekonstruktioner av verkliga olycksfall. I den första studien utvecklades en manlig och kvinnlig fotgängar-HBM baserat på en befintlig passagerar-HBM, tillsammans med ett effektivt verktyg för att rätta till en HBMs antropometri. I den andra studien utvecklades en metodologi för att rekonstruera huvudtrauman i trafikolyckor (gångtrafikanter eller cyklister). Metodologin validerades genom att rekonstruera 20 verkliga olyckor. I den tredje studien utvecklades och validerades en materialmodell för mänskligt skallben, som senare användes för att prediktera skallfrakturer i fem verkliga fallolyckor. Materialmodellen applicerades på en individanpassad huvudmodell, som också användes i den fjärde studien, där en rekonstruktion av en arbetsplatsolycka genomfördes för att utvärdera skyddshjälmars effektivitet.

Tillsammans belyser dessa fyra studier hur FE-rekonstruktioner, som involverar individanpassade biomekaniska FE-modeller, kan förutsäga huvudskador med slående likhet med verkliga data. När rekonstruktioner genomförs noggrant kan de hjälpa till att åskådliggöra den komplexa dynamiken bakom skall- och hjärnskador. De kan vara oumbärliga verktyg för att utvärdera skadeförebyggande åtgärder och undersöka orsakssamband inom rättsmedicinska sammanhang.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. 103
Series
TRITA-CBH-FOU ; 2025:8
Keywords [en]
Finite element human body model, Skull fracture prediction, Accident reconstruction, Head injury prevention, Real-world traffic data, Forensic head trauma analysis, Vulnerable road users
Keywords [sv]
Humanmodell, Prediktering av skallfraktur, Olycksfallsrekonstruktion, Prevention av huvudskador, Rättsmedicinsk bedömning av huvudskada, Oskyddade trafikanter
National Category
Forensic Science Applied Mechanics Solid and Structural Mechanics Medical Modelling and Simulation
Research subject
Technology and Health
Identifiers
URN: urn:nbn:se:kth:diva-362814ISBN: 978-91-8106-238-0 (print)OAI: oai:DiVA.org:kth-362814DiVA, id: diva2:1954665
Public defence
2025-05-26, T2 (Jacobssonsalen), Hälsovägen 11C, via Zoom: https://kth-se.zoom.us/j/67595775577, Huddinge, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2025-04-25

Available from: 2025-04-25 Created: 2025-04-25 Last updated: 2025-04-29Bibliographically approved
List of papers
1. Development of personalizable female and male pedestrian SAFER human body models
Open this publication in new window or tab >>Development of personalizable female and male pedestrian SAFER human body models
Show others...
2024 (English)In: Traffic Injury Prevention, ISSN 1538-9588, E-ISSN 1538-957X, Vol. 25, no 2, p. 182-193Article in journal (Refereed) Published
Abstract [en]

ObjectivesVulnerable road users are globally overrepresented as victims of road traffic injuries. Developing biofidelic male and female pedestrian human body models (HBMs) that represent diverse anthropometries is essential to enhance road safety and propose intervention strategies.MethodsIn this study, 50th percentile male and female pedestrians of the SAFER HBM were developed via a newly developed image registration-based mesh morphing framework. The performance of the HBMs was evaluated by means of a set of cadaver experiments, involving subjects struck laterally by a generic sedan buck.ResultsIn simulated whole-body pedestrian collisions, the personalized HBMs effectively replicate trajectories of the head and lower body regions, as well as head kinematics, in lateral impacts. The results also demonstrate the personalization framework's capacity to generate personalized HBMs with reliable mesh quality, ensuring robust simulations.ConclusionsThe presented pedestrian HBMs and personalization framework provide robust means to reconstruct and evaluate head impacts in pedestrian-to-vehicle collisions thoroughly and accurately.

Place, publisher, year, edition, pages
Informa UK Limited, 2024
Keywords
Human body model, pedestrian protection, morphing, impact biomechanics
National Category
Vehicle and Aerospace Engineering
Identifiers
urn:nbn:se:kth:diva-342335 (URN)10.1080/15389588.2023.2281280 (DOI)001126484200001 ()38095596 (PubMedID)2-s2.0-85179706101 (Scopus ID)
Note

QC 20240116

Available from: 2024-01-16 Created: 2024-01-16 Last updated: 2025-04-25Bibliographically approved
2. Toward systematic finite element reconstructions of accidents involving vulnerable road users
Open this publication in new window or tab >>Toward systematic finite element reconstructions of accidents involving vulnerable road users
Show others...
2025 (English)In: Traffic Injury Prevention, ISSN 1538-9588, E-ISSN 1538-957XArticle in journal (Refereed) Epub ahead of print
Abstract [en]

To combat the global fatality rates among vulnerable road users (VRUs), prioritizing research on head injury mechanisms and human tolerance levels in vehicle-to-VRU traffic collisions is imperative. A foundational step for VRU injury prevention is often to create virtual reconstructions of real-world collisions. Thus, efficient and trustworthy reconstruction tools are needed to make use of recent advances in accident data collection routines and Finite Element (FE) human body modeling. In this study, a comprehensive and streamlined reconstruction methodology, starting from a video-recorded accident, has been developed. The workflow, that includes state-of-the-art tools for personalization of human body models (HBMs) and vehicles, was evaluated and demonstrated through 20 real-world VRU collision cases. The FE models successfully replicated the vehicle damage that was observed in on-scene photographs of the post-impact vehicle, as well as impact kinematics captured in dash cam or surveillance recordings. The findings highlight how video evidence can considerably narrow down the number of plausible impact scenarios and raise the credibility of virtual reconstructions of real-world VRU collision events. More importantly, this study demonstrates how, with an efficient and systematic methodology, FE might be feasible also for large-scale VRU accident datasets.

Place, publisher, year, edition, pages
Informa UK Limited, 2025
National Category
Applied Mechanics
Research subject
Technology and Health; Applied and Computational Mathematics, Numerical Analysis
Identifiers
urn:nbn:se:kth:diva-359625 (URN)10.1080/15389588.2024.2449257 (DOI)001411806100001 ()2-s2.0-85216745142 (Scopus ID)
Funder
Vinnova, 2019-03386Swedish Research Council, 2020-04724Swedish Research Council, 2020-04496
Available from: 2025-02-06 Created: 2025-02-06 Last updated: 2025-04-25Bibliographically approved
3. Prediction of skull fractures in blunt force head traumas using finite element head models
Open this publication in new window or tab >>Prediction of skull fractures in blunt force head traumas using finite element head models
Show others...
2023 (English)In: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 23, no 1, p. 207-225Article in journal (Refereed) Published
Abstract [en]

Traumatic head injuries remain a leading cause of death and disability worldwide. Although skull fractures are one of the most common head injuries, the fundamental mechanics of cranial bone and its impact tolerance are still uncertain. In the present study, a strain-rate-dependent material model for cranial bone has been proposed and implemented in subject-specific Finite Element (FE) head models in order to predict skull fractures in five real-world fall accidents. The subject-specific head models were developed following an established image-registration-based personalization pipeline. Head impact boundary conditions were derived from accident reconstructions using personalized human body models. The simulated fracture lines were compared to those visible in post-mortem CT scans of each subject. In result, the FE models did predict the actual occurrence and extent of skull fractures in all cases. In at least four out of five cases, predicted fracture patterns were comparable to ones from CT scans and autopsy reports. The tensile material model, which was tuned to represent rate-dependent tensile data of cortical skull bone from literature, was able to capture observed linear fractures in blunt indentation loading of a skullcap specimen. The FE model showed to be sensitive to modeling parameters, in particular to the constitutive parameters of the cortical tables. Nevertheless, this study provides a currently lacking strain-rate dependent material model of cranial bone that has the capacity to accurately predict linear fracture patterns. For the first time, a procedure to reconstruct occurrences of skull fractures using computational engineering techniques, capturing the all-in-all fracture initiation, propagation and final pattern, is presented.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Forensic Science Mechanical Engineering
Identifiers
urn:nbn:se:kth:diva-349371 (URN)10.1007/s10237-023-01768-5 (DOI)001056287200001 ()37656360 (PubMedID)2-s2.0-85169305371 (Scopus ID)
Funder
Vinnova, 2019-03386KTH Royal Institute of Technology
Note

QC 20240701

Available from: 2024-07-01 Created: 2024-07-01 Last updated: 2025-04-25Bibliographically approved
4. Can construction helmets save lives? Evidence from a biomechanical reconstruction of a work-related head trauma
Open this publication in new window or tab >>Can construction helmets save lives? Evidence from a biomechanical reconstruction of a work-related head trauma
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Each year, 320 000 people die from occupational injuries. The construction sector is one of the most hazardous sectors, showing a high incidence of workplace fatalities, of which many are caused by traumatic head injuries. In this study, the efficiency of construction helmets have been investigated through an in-depth accident reconstruction of a real-world workplace head trauma, aiming to investigate causation, prevention and liabilities in a real-world workplace fatality. The accident was reconstructed with a state-of-the-art subject-specific head model, used to predict the skull fracture and the brain's response to impact. The results of this study show how the skull fracture pattern was predicted with striking resemblance to the real-world fracture and how the locations of high brain strains were predicted in accordance with the victim's brain lesions. The impact scenarios were compared with the hypothetical scenario in which a construction helmet was worn during the impact. The comparison provides evidence to support that a helmet would have prevented the skull fracture, and possibly also life-threatening brain injury. This case study demonstrates how FE reconstructions can help prove causality and liability in fatal head traumas. More importantly, the findings highlight the role of safety helmets in preventing lethal head injuries and their importance in combating the globally high incidence of fatal work-related accidents.

Keywords
Accident reconstruction, Injury prediction, FE head model, Skull fractures, Traumatic brain injury
National Category
Applied Mechanics Medical Modelling and Simulation
Research subject
Applied and Computational Mathematics, Numerical Analysis; Medical Technology; Applied and Computational Mathematics; Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-362664 (URN)
Funder
Vinnova, 2019- 03386Swedish Research Council, 2020- 04724 and 2020-0449Swedish National Infrastructure for Computing (SNIC)
Note

QCR 20250424

Available from: 2025-04-23 Created: 2025-04-23 Last updated: 2025-04-25Bibliographically approved

Open Access in DiVA

Kappa(21173 kB)98 downloads
File information
File name FULLTEXT01.pdfFile size 21173 kBChecksum SHA-512
5dca1b404b508fc2fb2ccc66a5364ba0fde8a3927fa97b2208321c53260c1941e65e515118d64b42b8e1197d8fcfadf06ffa3ebbddb79d6cd32ce4fe76629361
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Lindgren, Natalia
By organisation
Neuronic Engineering
Forensic ScienceApplied MechanicsSolid and Structural MechanicsMedical Modelling and Simulation

Search outside of DiVA

GoogleGoogle Scholar
Total: 99 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 749 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf