Continued improvement of heat control in mesoscopic conductors brings novel tools for probing strongly correlated electron phenomena. Motivated by these advances, we comprehensively study transport due to a temperature bias in a quantum point contact device in the fractional quantum Hall regime. We compute the charge-current noise (so-called delta-T noise), heat-current noise, and mixed noise and elucidate how these observables can be used to infer strongly correlated properties of the device. Our main focus is the extraction of so-called scaling dimensions of the tunneling anyonic quasiparticles, of critical importance to correctly infer their anyonic exchange statistics.