Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stimulus representation in single neurons and neuronal populations: Role of tuning shapes on minimal decoding times, and input-output functions under in-vivo-like inputs
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0002-6165-4900
2025 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

In this thesis, we explore different topics related to information processing in neuronal circuits. Understanding information processing in biological networks requires not only understanding the information-theoretic consequences of neuronal activity but also understanding the network and single-cell dynamics and transformations underlying those responses. Therefore, we take on two different perspectives on information processing in the brain. First, we study the information-theoretic consequences of different shapes of tuning curves. Here, we depart from the traditional method of studying information through asymptotical measures such as Fisher information or mutual information and instead focus on the impact of tuning shapes and decoding times on rare but large estimation errors. We show that studying the role of decoding time reveals new interesting constraints on the "neural code." We argue that these constraints might explain the tuning organization found in early sensory systems. Second, we explore the role of single-cell and network dynamics on the input-output transfer function of spike trains. Understanding how single cells and networks of cells transform external signals is a key component in understanding the constraints and possibilities to encode information in neuronal circuits. In particular, we study the role of NMDA in expanding the post-synaptic range of sensitivity to pre-synaptic activity into states of high conductance using modeling of a morphologically reconstructed cell. We show that the NMDA-AMPA ratio can be an important mechanism to control the excitability of a cell given its natural range of inputs. Lastly, we study the joint input-output transformation of firing rate and synchrony in networks of point neurons. Synchronous inputs have been proposed to increase the pre-synaptic efficacy in electing post-synaptic responses but can also induce strong synchronization in the downstream networks. We show that feedforward inhibition, if tightly correlated with the feedforward excitation, can reduce post-synaptic synchronization at the expense of input synchrony no longer driving increased post-synaptic activity but, if anything, hinders it.

Abstract [sv]

I denna avhandling utforskar vi olika ämnen kring informationsbearbetning i neurala nätverk. För att förstå informationsbearbetning i biologiska nätverk räcker det inte att endast studera de informationsvetenskapliga konsekvenserna av hjärnaktivitet, vi måste också förstå de underliggande dynamiska egenskaperna och transformationerna hos de celler och nätverk som ger upphov till aktiviteten. Därför tar vi an två perspektiv i denna avhandling. I den första delen undersöker vi, med hjälp av informationsvetenskapliga metoder, hur olika responskurvor (tuning curves) påverkar information. Vi frångår här från det vanliga användandet av asymptotiska mått, så som Fisher information eller ömsesidig information, och fokuserar istället på konsekvensen av korta avkodningstider. Vi visar att korta avkodningstider kräver andra, nya hänsynstaganden för en neural kod. Detta nya perspektiv ger en ny informationsvetenskaplig förklaring till de responskurvor som uppmäts i våra sensoriska nervsystem. I den andra delen av denna avhandling studerar vi transformationen av hjärnaktivitet i enstaka celler eller i nätverk av celler. Vi studerar en möjlig implikation av NMDA i att möjliggöra post-synaptisk sensitivitet i situationer av hög pre-synaptisk aktivitet genom simulationer av en morfologiskt rekonstruerad cell. Vi visar att den synaptiska NMDA-AMPA ration kan vara en viktig faktor med vilken celler kan anpassa sin excitabilitet efter dess naturliga pre-synaptiska aktivitetsnivå. Slutligen studerar vi även den gemensamma effekten av pre-synaptisk aktivitetsnivå och synkronicitet på den post-synaptiska aktiviteten i nätverk av punktneuroner. Synkroniserad aktivitet har föreslagits som en mekanism att öka den pre-synaptiska förmågan att driva post-synaptisk aktivitet. Dock kan synkron pre-synaptisk aktivitet även ge upphov till ytterligare synkronicitet i senare nätverk. Vi föreslår att inhibering, starkt korrelerad med den externa exciteringen, kan kraftigt reducera post-synaptisk synkronicitet. Slutligen visar vi att sådan dekorrelation även medför lägre aktivitet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. vii, 148
Series
TRITA-EECS-AVL ; 2025:45
Keywords [en]
Tuning curves, Minimal decoding time, Fisher information, Neural coding, NMDA-AMPA ratio, Excitability, Synchrony, EI-balance
Keywords [sv]
Stimulus-respons-kurvor, Minimal avkodningstid, Fisher information, Neural kod, NMDA-AMPA ratio, Excitabilitet, Synkronicitet, EI-balans
National Category
Neurosciences Other Electrical Engineering, Electronic Engineering, Information Engineering Bioinformatics (Computational Biology)
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-362676ISBN: 978-91-8106-256-4 (print)OAI: oai:DiVA.org:kth-362676DiVA, id: diva2:1954045
Public defence
2025-05-20, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20250423

Available from: 2025-04-23 Created: 2025-04-23 Last updated: 2025-05-09Bibliographically approved

Open Access in DiVA

Movitz Lenninger - Doctoral Thesis(43302 kB)536 downloads
File information
File name FULLTEXT01.pdfFile size 43302 kBChecksum SHA-512
0be7a4ac79f7c820d18f48037400f2fbca2bf7186a33b26e57949f616d17a02f02c001ee6c7d95c3d4ed57262b2758deb81f047ff75a6cb16f9284a704184955
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Lenninger, Movitz
By organisation
Information Science and Engineering
NeurosciencesOther Electrical Engineering, Electronic Engineering, Information EngineeringBioinformatics (Computational Biology)

Search outside of DiVA

GoogleGoogle Scholar
Total: 537 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 786 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf