Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Non-isometric translation and modulation invariant Hilbert spaces
Harish Chandra Research Institute, India.
Linnaeus University, Faculty of Technology, Department of Mathematics.ORCID iD: 0000-0003-1921-8168
Ghent University, Belgium.
2025 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 550, no 1, article id 129530Article in journal (Refereed) Published
Abstract [en]

Let H be a Hilbert space, continuously embedded in S'(Rd), and which contains at least one non-zero element in S'(Rd). If there is a constant C0 > 0 such that ||ei❮· ,ε❯ f ( ·  -x)||HC0||f||H, fH, x, ε ∈ Rd, then we prove that H = L2(Rd), with equivalent norms.

Place, publisher, year, edition, pages
Elsevier, 2025. Vol. 550, no 1, article id 129530
Keywords [en]
Modulation spaces, Feichtinger's minimization principle
National Category
Mathematical Analysis
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-138121DOI: 10.1016/j.jmaa.2025.129530ISI: 001464358800001Scopus ID: 2-s2.0-105001598319OAI: oai:DiVA.org:lnu-138121DiVA, id: diva2:1953388
Available from: 2025-04-22 Created: 2025-04-22 Last updated: 2025-05-05Bibliographically approved

Open Access in DiVA

fulltext(687 kB)8 downloads
File information
File name FULLTEXT01.pdfFile size 687 kBChecksum SHA-512
5bbdea08c59fb56139cd187a862fed354f9e7b9158bc9e579798fef5e4cbcfd87fcfdd7dba566b8490e5f5fe508cd15c4d7ae63ac3fc0fe853046494db38299b
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Toft, Joachim
By organisation
Department of Mathematics
In the same journal
Journal of Mathematical Analysis and Applications
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 8 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf