Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Partially hyperbolic lattice actions on 2-step nilmanifolds
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Analysis, Dynamics, Geometry, Number Theory and PDE.ORCID iD: 0009-0004-1889-9840
Northwestern University, Evanston, IL 60208, USA.ORCID iD: 0000-0001-5709-5977
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We prove global rigidity results for actions of higher rank lattices on nil- manifolds containing a partially hyperbolic element. We consider actions of higher rank lattices on tori or on 2 ́step nilpotent nilmanifolds, such that the actions contain a partially hyperbolic element with 1 ́dimensional center. In this setting we prove, under a techni- cal assumption on the partially hyperbolic element, that any such action must be by affine maps. This extends results from [4] to lattice actions that are not Anosov. 

National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-362394OAI: oai:DiVA.org:kth-362394DiVA, id: diva2:1952183
Note

QC 20250416

Available from: 2025-04-14 Created: 2025-04-14 Last updated: 2025-04-17Bibliographically approved
In thesis
1. Higher rank dynamics on nilmanifolds
Open this publication in new window or tab >>Higher rank dynamics on nilmanifolds
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The theory of dynamical systems is the area of mathematics that studies systems that change in time. This theory can be used to study everything from the movement of celestial bodies, unpredictability of weather forecasts, and self-organizing behaviour among fireflies to questions within geometry and number theory. Classically, a dynamical system consists of two parts (i) a phase space, the space of all possible states, and (ii) a law for updating from one state to the next as time passes. When viewing time as discrete, this naturally gives rise to an action of the integers, where an integer n moves a state x to the corresponding state after time n. However, motivated by questions in geometry, number theory, or dynamics itself, it is often useful to study group actions of more exotic groups. The symmetries of a classical system are the collection of all global changes of coordinates that leave the dynamics intact; taking all symmetries together we obtain the symmetry group of the system. This group naturally acts on the phase space so, given a classical system, we obtain an induced action of its symmetry group. A general philosophy is that having a large symmetry group is highly restrictive and in special cases, we even expect to be able to classify all systems with sufficiently many symmetries. This is a rigidity phenomenon, i.e. the a priori weak assumption of having a large symmetry group has the seemingly much stronger conclusion that the system can be completely classified. This thesis consists of four papers that aim to understand the symmetries in certain classes of chaotic dynamical systems, as well as understanding the related question of rigidity of large group actions.

Papers I and II investigate the symmetries of perturbations of a certain class of dynamical systems, partially hyperbolic nilmanifold automorphisms. The main results are complete classifications of all possible symmetries for these perturbations, as well as a classification of those perturbations that admit a large symmetry group. It is shown that for these systems the property of having many symmetries is closely related to the preservation of algebraic structures.

Paper III studies actions of higher rank lattices (e.g., the group of all invertible 3 by 3 matrices with integer entries) on a certain type of manifolds (tori and Heisenberg nilmanifolds). It is shown that if these actions contain an element that is sufficiently chaotic, characterized by being partially hyperbolic, then the action must be of an algebraic origin.

Paper IV studies a class of continuous time classical dynamical systems with a property known as being cohomology free. Conjecturally these can only exist on special types of phase spaces, tori. We prove this conjecture when the phase space is a nilmanifold, a larger class of spaces that contain tori as special cases.

Abstract [sv]

Dynamik är området inom matematik som studerar system vilka ändras över tid. Denna teori kan sedan användas för att studera allt från hur himlakroppar rör sig i solsystemet, oförutsägbarhet i väderprognoser, och självorganiserande beteende hos eldflugor till frågor inom geometri och talteori. Ett klassiskt dynamiskt system består av två delar, (i) ett fasrum som innehåller systemets alla möjliga tillstånd, (ii) och en lag som låter oss uppdatera från ett tillstånd till nästa då tid passerar. När vi ser tiden som diskret, då ger ett dynamisk system naturligt upphov till en verkan av heltalen: ett heltal n flyttar ett tillstånd x till motsvarande tillstånd efter tid n. Motiverat av frågor inom geometri, talteori och inom dynamik så är det ofta användbart att studera gruppverkan av mer exotiska grupper. En symmetri av ett klassiskt dynamiskt system är ett globalt koordinatbyte av fasrummet sådant att dynamiken inte ändras; kollektionen av alla symmetrier till systemet är systemets symmetrigrupp. Denna grupp agerar naturligt på fasrummet, så givet ett klassiskt dynamiskt system så får vi en inducerad verkan av dess symmetrigrupp. En generell filosofi är att en stor symmetrigrupp är restriktivt och i specialfall så förväntar vi oss att kunna klassificera alla system med tillräckligt många symmetrier. Detta är ett rigiditetsfenomen; den a priori svaga egenskapen att systemet har stor symmetrigrupp implicerar den till synes starka slutsatsen att systemet kan bli helt klassificerat. Den här avhandlingen består av fyra artiklar som syftar på att förstå symmetrier av vissa klasser av kaotiska dynamiska system, och den relaterade frågan om rigiditet av verkan av stora grupper.

Artikel I och II undersöker symmetrier av små störningar av en viss typ av dynamiska system, partiellt hyperboliska nilmångfalds automorfier. Huvudresultaten är en komplett klassifikation av de möjliga symmetrigrupper som kan uppstå för dessa störningar, och en klassifikation av de störningar som har en stor symmetrigrupp. Det visas att för dessa system så är egenskapen att ha många symmetrier nära relaterad med bevarande av algebraiska strukturer.

Artikel III studerar verkan av högre rangs gitter (till exempel alla inverterbara 3 gånger 3 matriser med heltals koefficienter) på en viss typ av mångfalder, torusar och Heisenberg nilmångfalder. Det visas att om dessa verkan innehåller ett element som är tillräckligt kaotiskt, karakteriserat av partiell hyperbolicitet, då måste verkan ha ett algebraiskt ursprung.

Artikel IV studerar en klass av dynamiska system i kontinuerlig tid med egenskapen att de är kohomologi fria. En förmodan säger att dessa system endast kan existera på en viss typ av fasrum, torusar. Vi bevisar att denna förmodan stämmer då fasrummet är en nilmångfald, en större klass av rum som innehåller torusar som ett specialfall.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. 221
Series
TRITA-SCI-FOU ; 2025:13
Keywords
Dynamics, partially hyperbolic, higher rank systems, rigidity
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
urn:nbn:se:kth:diva-362556 (URN)978-91-8106-230-4 (ISBN)
Public defence
2025-05-15, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 2025-04-24

Available from: 2025-04-24 Created: 2025-04-17 Last updated: 2025-04-24Bibliographically approved

Open Access in DiVA

fulltext(386 kB)30 downloads
File information
File name FULLTEXT01.pdfFile size 386 kBChecksum SHA-512
95ffe2a4830c162f468be15e4d608d0890068382dcd1217f9fcbff3b6e87660c85227e4dd8d28fc53f734d231aac64c2b01d38a21d3e28f63d1b982869ebc112
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Sandfeldt, SvenLee, Homin
By organisation
Analysis, Dynamics, Geometry, Number Theory and PDE
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 32 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf