Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling the damage of metallic plasma-facing components under energetic transient events in fusion reactors
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.ORCID iD: 0009-0001-7333-5544
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Magnetic confinement fusion represents one of the most promising pathways to achieving sustainable and clean energy production. In this approach, strong magnetic fields are used to confine hot plasma within a device preventing it from coming into direct contact with the vessel walls. However, plasma-wall interactions remain an unavoidable challenge, as some heat and particles inevitably escape confinement, particularly during energetic transient events. These interactions pose a significant threat to the integrity of plasma-facing components (PFCs), which are subjected to extreme thermal and particle loads. Among the various forms of damage caused by such loads, melt damage is particularly concerning due to its potential to severely degrade the performance and longevity of PFCs. 

To address these challenges, the MEMOS-U physics model was developed to simulate macroscopic melt motion in fusion environments. MEMOS-U simplifies the computational heavy thermoelectric magnetohydrodynamic equations by employing the shallow water approximation, which reduces the dimensionality of the problem. MEMOS-U has been validated against a series of dedicated tokamak experiments, demonstrating its ability to capture the essential features of melt motion in fusion environments.

Building on the MEMOS-U model, the MEMENTO code was developed as a modern numerical implementation designed to further enhance the predictive capabilities of melt motion simulations. MEMENTO leverages the AMReX framework to create and maintain a non-uniform, adaptive grid, enabling efficient simulations of large PFCs over long time scales. The code includes solvers for heat transfer, fluid dynamics, and current propagation, all of which are fully coupled to accurately model the interplay between thermal loading, melt motion, and electromagnetic effects. 

The MEMENTO code has been validated against experimental data from dedicated controlled melting experiments carried out in the ASDEX-Upgrade and WEST tokamaks. Predictive studies with MEMENTO have provided valuable insights into the potential melt damage in future tokamaks. In summary, MEMENTO represents a significant advancement in the modeling of macroscopic melt motion in fusion environments. By implementing the MEMOS-U physics model in a new code, MEMENTO provides a reliable and computationally efficient tool able to accurately predict melt damage in future reactors for regimes that could not be probed before. 

Abstract [sv]

Magnetisk inneslutningsfusion representerar en av de mest lovande vägarna för att uppnå hållbar och ren energiproduktion. I detta tillvägagångssätt används starka magnetfält för att begränsa het plasma i en anordning som förhindrar att den kommer i direkt kontakt med kärlväggarna. Emellertid förblir plasma vägginteraktioner en oundviklig utmaning, eftersom en del värme och partiklar oundvikligen undkommer instängdhet, särskilt under energetiska övergående händelser. Dessa interaktioner utgör ett betydande problem mot integriteten hos plasmavända komponenter (PFC), som utsätts för extrema värme- och partikelbelastningar. Bland de olika former av skador som orsakas av sådana belastningar är smältskador särskilt oroande på grund av dess potential att allvarligt försämra prestandan och livslängden hos PFC.

För att möta dessa utmaningar utvecklades MEMOS-U-fysikmodellen för att simulera makroskopisk smältrörelse i fusionsmiljöer. MEMOS-U förenklar de beräkningsmässiga tunga termoelektriska magnetohydrodynamiska ekvationerna genom att använda den grunt vatten approximationen, vilket minskar dimensionaliteten av problemet. MEMOS-U har validerats mot en serie dedikerade tokamak-experiment, som visar dess förmåga att fånga de väsentliga egenskaperna hos smältrörelse i fusionsmiljöer.

Med utgångspunkt i MEMOS-U-modellen utvecklades MEMENTO-koden som en modern numerisk implementering utformad för att ytterligare förbättra de förutsägande kapaciteterna hos smältrörelsesimuleringar. MEMENTO utnyttjar AMReX-ramverket för att skapa och underhålla ett oenhetligt, adaptivt rutnät, vilket möjliggör effektiva simuleringar av stora PFC:er över långa tidsskalor. Koden inkluderar lösare för värmeöverföring, strömningsdynamik och strömspropagering, som alla är helt kopplade för att exakt modellera samspelet mellan termisk belastning, smältrörelse och elektromagnetiska effekter.

MEMENTO-koden har validerats mot experimentella data från dedikerade kontrollerade smältexperiment utförda i ASDEX-Upgrade och WEST tokamaks. Prediktiva studier med MEMENTO har gett värdefulla insikter om potentiella smältskador i framtida tokamaks. Sammanfattningsvis representerar MEMENTO ett betydande framsteg i modelleringen av makroskopisk smältrörelse i fusionsmiljöer. Genom att implementera MEMOS-U fysikmodellen i en ny kod tillhandahåller MEMENTO ett tillförlitligt och beräknings-effektivt verktyg som kan förutsäga smältskador i framtida reaktorer för regimer som inte kunde sonderas tidigare.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. , p. ix, 80
Series
TRITA-EECS-AVL ; 2025:41
Keywords [en]
Magnetic confinement fusion, plasma-wall interactions, metallic plasma-facing components, melt damage, melt motion, MEMOS-U, MEMENTO, thermoelectric magnetohydrodynamics
National Category
Fusion, Plasma and Space Physics
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-362322ISBN: 978-91-8106-243-4 (print)OAI: oai:DiVA.org:kth-362322DiVA, id: diva2:1951425
Public defence
2025-05-12, https://kth-se.zoom.us/j/62498661239, F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20250411

Available from: 2025-04-11 Created: 2025-04-10 Last updated: 2025-04-28Bibliographically approved
List of papers
1. The MEMENTO code for modeling of macroscopic melt motion in fusion devices
Open this publication in new window or tab >>The MEMENTO code for modeling of macroscopic melt motion in fusion devices
Show others...
2024 (English)In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 206, article id 114603Article in journal (Refereed) Published
Abstract [en]

The MEMENTO (MEtallic ME tallic M elt E volution in N ext-step TO kamaks) code is a new numerical implementation of the physics model originally developed for the MEMOS-U code with the objective to self-consistently describe the generation of melt and its subsequent large scale dynamics in fusion devices and to assess the damage of metallic reactor armor under powerful normal and off-normal plasma events. The model has been validated in multiple dedicated EUROfusion experiments. MEMENTO solves the heat and phase transfer problem coupled with the incompressible Navier-Stokes equations in the shallow water approximation for the thin liquid film over the solid metal and with the current propagation equations on a domain that features a time- evolving deforming metal-plasma interface. The code utilizes non-uniform and adaptive meshing along with sub-cycling in time facilitated by the AMReX open-source framework as well as AMReX's built-in parallelization capabilities.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Fusion plasma devices, Metallic melt motion, Plasma-facing components deformation, MEMENTO code, Shallow waters approximation
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-352246 (URN)10.1016/j.fusengdes.2024.114603 (DOI)001280949900001 ()2-s2.0-85198316421 (Scopus ID)
Funder
Swedish Research Council, 2021-05649EU, Horizon 2020, 101052200
Note

QC 20250410

Available from: 2024-08-27 Created: 2024-08-27 Last updated: 2025-04-10Bibliographically approved
2. Melt dynamics with MEMENTO — Code development and numerical benchmarks
Open this publication in new window or tab >>Melt dynamics with MEMENTO — Code development and numerical benchmarks
2023 (English)In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 37, article id 101545Article in journal (Refereed) Published
Abstract [en]

The new numerical implementation of the MEMOS-U physics model, fully validated in multiple EUROfusion sponsored experiments, is presented. The computational tool - MEMENTO (MEtallic Melt Evolution in Next-step TOkamaks)- is able to address fusion-relevant melting scenarios that feature complex plasma-facing component geometries, involve intricate plasma wetting patterns and are characterized by vast spatio-temporal scale separations. The high level architecture of the code is discussed and numerical benchmarks of the heat transfer, fluid dynamics and current propagation solvers are presented.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Code benchmarking, Melt motion, MEMENTO code, MEMOS-U physics model, Tungsten melting
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-339719 (URN)10.1016/j.nme.2023.101545 (DOI)001105583000001 ()2-s2.0-85175638294 (Scopus ID)
Funder
Linköpings universitet, 2018-05973Swedish Research Council, 2021-05649European Commission, 101052200 - EUROfusion
Note

QC 20250411

Available from: 2023-11-20 Created: 2023-11-20 Last updated: 2025-04-11Bibliographically approved
3. Experiments and modelling on ASDEX Upgrade and WEST in support of tool development for tokamak reactor armour melting assessments
Open this publication in new window or tab >>Experiments and modelling on ASDEX Upgrade and WEST in support of tool development for tokamak reactor armour melting assessments
Show others...
2022 (English)In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 33, article id 101303Article in journal (Refereed) Published
Abstract [en]

The risk of metallic armour melting constitutes a major concern for ITER and DEMO. Combined computational and experimental effort has led to a successful understanding of melt dynamics in present-day tokamaks, but there remain unexplored melting regimes of relevance to future reactors. Analysis of recent poor-versus -efficient thermionic emitter sample exposures in ASDEX-Upgrade and ITER-like actively cooled tungsten leading edge exposures in WEST is presented. The coupled thermal response and melt dynamics is modelled with the new MEMENTO code employing the MEMOS-U physics model which has no adjustable parameters. In the weak Lorentz force regime accessed in the exposures, very close agreement between modelling and experiments is achieved not only for the deformation profiles, but also for the additional, unique to these experiments, constraints; simultaneous thermal response of two different materials in ASDEX-Upgrade and in-situ detection of melt build-up in WEST.

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Tungsten melting, Melt motion, Thermionic emission, MEMENTO code, MEMOS-U model, Active cooling
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-323431 (URN)10.1016/j.nme.2022.101303 (DOI)000898843400002 ()2-s2.0-85147041719 (Scopus ID)
Funder
Swedish Research Council, 2021-05649
Note

QC 20250411

Available from: 2023-02-01 Created: 2023-02-01 Last updated: 2025-04-11Bibliographically approved
4. Metallic melt transport across castellated tiles
Open this publication in new window or tab >>Metallic melt transport across castellated tiles
Show others...
2024 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 64, no 3, article id 036012Article in journal (Refereed) Published
Abstract [en]

In future fusion reactors, extended melt pools in combination with strong plasma-induced accelerations, suggest that the metallic melt could reach the gaps between castellated plasma-facing components, potentially accompanied by profound changes in their mechanical response. The first results of a combined experimental and modelling effort to elucidate the physics of melt transport across gaps are presented. Transient melting of specially designed tungsten samples featuring toroidal gaps has been achieved in ASDEX Upgrade providing direct evidence of gap bridging. Detailed modelling with the MEMENTO melt dynamics code is reported. Empirical evidence and simulations reveal that the presence of gaps can be safely ignored in macroscopic melt motion predictions as well as that the re-solidification limited melt spreading facilitates gap bridging and leads to poor melt attachment. The findings are discussed in the context of ITER and DEMO.

Place, publisher, year, edition, pages
IOP Publishing, 2024
Keywords
large-scale melt motion, melt edge wetting, melt gap bridging, MEMENTO code, tungsten melting
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-343480 (URN)10.1088/1741-4326/ad219b (DOI)001154945700001 ()2-s2.0-85183946722 (Scopus ID)
Funder
Swedish Research Council, 2021-05649
Note

QC 20250411

Available from: 2024-02-15 Created: 2024-02-15 Last updated: 2025-04-11Bibliographically approved
5. Impact of repetitive ELM transients on ITER divertor tungsten monoblock top surfaces
Open this publication in new window or tab >>Impact of repetitive ELM transients on ITER divertor tungsten monoblock top surfaces
2024 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 64, no 12, article id 126022Article in journal (Refereed) Published
Abstract [en]

Owing to the high stored energy of ITER plasmas, the heat pulses due to uncontrolled Type I edge localized modes (ELMs) can be sufficient to melt the top surface of several poloidal rows of tungsten monoblocks in the divertor strike point regions. Coupled with the melt motion associated with tungsten in the strong tokamak magnetic fields, the resulting surface damage after even a comparatively small number of such repetitive transients may have a significant impact on long-term stationary power handling capability. The permissible numbers set important boundaries on operation and on the performance required from the plasma control system. Modelling is carried out with the recently updated MEMENTO melt dynamics code, which is tailored to tackle melt motion problems characterized by a vast spatio-temporal scale separation. The crucial role of coupling between surface deformation and shallow angle heat loading in aggravating melt damage is highlighted. As a consequence, the allowable operational space in terms of ELM-induced transient heat loads is history-dependent and once deformation has occurred, weaker heat loads, incapable of melting a pristine surface, can further extend the damage.

Place, publisher, year, edition, pages
IOP Publishing, 2024
Keywords
tungsten melting, ITER monoblock, shallow-angle loading, melt motion, MEMENTO code
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-355178 (URN)10.1088/1741-4326/ad7f6b (DOI)001327906400001 ()2-s2.0-85207067793 (Scopus ID)
Note

QC 20241024

Available from: 2024-10-24 Created: 2024-10-24 Last updated: 2025-04-11Bibliographically approved
6. On the melting threshold of toroidal gap edges of ITER divertor tungsten monoblocks under repetitive ELM transients
Open this publication in new window or tab >>On the melting threshold of toroidal gap edges of ITER divertor tungsten monoblocks under repetitive ELM transients
(English)Manuscript (preprint) (Other academic)
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-362321 (URN)
Note

QC 20250411

Available from: 2025-04-10 Created: 2025-04-10 Last updated: 2025-04-11Bibliographically approved

Open Access in DiVA

fulltext(12864 kB)1620 downloads
File information
File name FULLTEXT01.pdfFile size 12864 kBChecksum SHA-512
9c7c747b0a2acaa662c371622a03937ad03fcd9145633942606ed28175f3e84159979abaf689a0645a0f402a31be61e30c2bff4317c45d0a8247f2baedee1392
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Paschalidis, Konstantinos
By organisation
Space and Plasma Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1622 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 588 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf