Metaheuristic algorithms have become powerful tools for solving complex optimization problems. Consensus-based optimization (CBO), inspired by social interactions, models a network where agents adjust their positions by learning from their neighbors. While effective, CBO relies on a fixed network structure, limiting its adaptability. To overcome this, we propose the Human Generation (HG) algorithm, which extends CBO by incorporating a two-layer influence mechanism. The first layer mimics kinship-based learning, ensuring local refinement, while the second layer models elite-following behavior, enabling efficient global exploration. This structured adaptation enhances both convergence speed and solution accuracy. We evaluate HG across unimodal, multimodal, and complex optimization problems, as well as a real-world image thresholding application. Experimental results demonstrate that HG consistently outperforms CBO and other state-of-the-art algorithms, making it a robust optimization approach.