Aromatic hydrocarbons are important components of jet fuels mainly due to their effects on lowering the freeze point, enhancing the lubricity, and preventing the fuel leakage in the engines and fueling systems by interacting with their polymer seals. Produced from fossil resources, jet fuel consumption contributes to rising atmospheric CO2 levels. Therefore, efficient utilization of renewable resources, such as biomass, to produce jet fuel components is an important step toward building a sustainable society. Hence, structure-modified zeolite catalysts that determine a high selective production of aromatic HCs in the range of jet fuel chemicals from biomass via catalytic pyrolysis were synthesized and engineered in a PyroGC-MS/FID system. The structure-modified catalysts of hierarchical HBeta (HRCHY HBeta) and defect-free nano-sized crystals ZSM-5 (ZSM-5-F) were used to selectively deoxygenate the reactive species in biomass pyrolysis vapors leading to a high production of renewable jet fuels (bio jet fuels; BJFs). The morphology of zeolites were designed for an enhanced diffusion of biomass pyrolysis vapors and upgraded products, in and out of the catalyst, to selectively produce monoaromatic HCs. A comprehensive comparison of the experimental and theoretical results obtained from biomass pyrolysis using the commercial catalyst of HBeta and the structure-modified catalysts of hierarchical HBeta and defect-free ZSM-5 was accomplished in in-situ and ex-situ catalytic configurations. Meanwhile, the catalytic performance of the ZSM-5-F catalyst in the conversion of a biomass pyrolysis oil model into jet fuel chemicals was investigated using a fixed bed catalytic reactor.
Open access funding provided by RISE Research Institutes of Sweden. The authors would like to thank the Swedish Energy Agency for fnancially supporting this study via the project P2021-00086