Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AI-Driven Identification of Reference Projects for Architectural Tenders: A Data-Driven Approach: Development of a Project Retrieval System and its Application in the AEC Industry
KTH, School of Electrical Engineering and Computer Science (EECS).
2025 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
AI-driven identifiering av referensprojekt för arkitektoniska anbud : En datadriven metod (Swedish)
Abstract [en]

The identification of suitable reference projects is a critical yet time-consuming aspect of the architectural tendering process. This thesis investigates how arti- ficial intelligence (AI) can be leveraged to automate and optimize this task, fo- cusing on Cedervall Arkitekter as a case study. A data-driven retrieval system was developed to mine internal datasets—specifically the Milltime database— encompassing both structured project metadata and unstructured user notes. After evaluating multiple AI methods, an embedding-based retrieval approach integrated with keyword filtering was selected, striking a balance between computational efficiency and retrieval accuracy. Deployed on-premise as a web application, the final solution enables ar- chitects and procurement staff to query project records using natural language inputs. The system applies semantic similarity modeling and a customized ranking algorithm to provide rapid, relevant search results, cutting manual search time by more than 50% according to user testing. Structured interviews further demonstrated its capacity to enhance the reference project selection process and reduce reliance on personal memory. Taken together, these find- ings underscore the value of AI-driven retrieval systems in architectural prac- tices, while highlighting promising directions for expanded machine learning integration within tendering and other knowledge-intensive workflows in the architecture, engineering, and construction (AEC) sector.

Abstract [sv]

Identifieringen av lämpliga referensprojekt är en avgörande men tidskrävan- de del av anbudsprocessen inom arkitektur. I detta examensarbete undersöks hur artificiell intelligens (AI) kan användas för att automatisera och effekti- visera denna uppgift, med Cedervall Arkitekter som fallstudie. Ett datadrivet söksystem utvecklades för att analysera interna datakällor—särskilt Milltime- databasen—som innehåller både strukturerad projektinformation och ostruk- turerade användarnoteringar. Efter att flera AI-metoder utvärderats valdes en lösning baserad på inbäddade representationer i kombination med nyckelords- filtrering, vilket ger en god balans mellan beräkningskostnad och söknoggrann- het. Systemet, som körs lokalt som en webbapplikation, gör det möjligt för arki- tekter och upphandlingspersonal att söka projektposter med hjälp av naturliga språk. Med semantisk likhetsberäkning och en anpassad rankningsalgoritm le- vererar systemet snabba och relevanta träffar, vilket kortar ned manuell söktid med över 50%. Strukturerade intervjuer visar dessutom att verktyget förbätt- rar processen för att hitta referensprojekt och minskar beroendet av personliga minnesanteckningar. Sammantaget belyser resultaten hur AI-baserade söksy- stem kan gynna arkitektverksamheter och öppnar för ytterligare användning av maskininlärning inom anbudsarbete och andra kunskapsintensiva områden i arkitektur-, ingenjörs- och byggsektorn (AEC).

Place, publisher, year, edition, pages
2025. , p. 60
Series
TRITA-EECS-EX ; 2025:66
Keywords [en]
Artificial intelligence, Architecture, Tenders, Data Engineering, Semantic sim- ilarity, Natural Language Model, Data-driven solution
Keywords [sv]
Artificiell intelligens, Arkitektur, Anbud, Dataingenjörskonst, Semantisk lik- het, Naturlig språkmodell, Datadriven lösning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-362109OAI: oai:DiVA.org:kth-362109DiVA, id: diva2:1950534
External cooperation
Cedervall Arkitekter
Supervisors
Examiners
Available from: 2025-04-11 Created: 2025-04-08 Last updated: 2025-04-11Bibliographically approved

Open Access in DiVA

fulltext(1346 kB)74 downloads
File information
File name FULLTEXT01.pdfFile size 1346 kBChecksum SHA-512
d6c7bf040d5b10ace740d1cd7424fd9b62371b1be4b175ebde4d049388d465920cf36a104ccf713e4cc5636ccda52c9eca83e455708dc5dadbad75aaa3abbfee
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 75 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 362 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf