Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigating the biology and specific targeting of individual G-quadruplex structures
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
2025 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Granskning av biologin hos G-quadruplex-strukturer och enskilt målinrikta dessa (Swedish)
Abstract [en]

G-quadruplex (G4) structures are non-canonical DNA and RNA conformations formed in guanine-rich regions that play roles in gene regulation, genome stability, and RNA processing. However, targeting the approximately 700,000 G4s in the human genome with high specificity remains challenging due to their structural similarities. Despite their biological significance, this inability to selectively study or manipulate individual G4s presents a significant barrier to understanding their distinct roles in human cells and complicates efforts to dissect their contributions to cellular processes.

To address this limitation, we developed a strategy based on click chemistry to covalently link short single-stranded oligonucleotides (Os) to G4 ligands (GLs). This approach combines the stabilising properties of G4 ligands with the sequence specificity of guide oligonucleotides to create G4-ligand-oligonucleotide (GL-O) conjugates. The oligonucleotide forms double-stranded DNA (dsDNA) with the flanking region of the target G4, ensuring selective binding and stabilisation of the desired G4 structure. Through biophysical and biochemical assays, we demonstrated that this approach enables the selective stabilisation of individual target G4s, highlighting its utility for studying specific G4 structures.

In refining the GL-O platform, we systematically evaluated various linker configurations. This work demonstrated that longer and more flexible linkers enhance the adaptability of GL-O conjugates, allowing efficient targeting of G4s with varying distances between the G4-forming region and the complementary oligonucleotide binding sequence. This insight is particularly valuable for addressing steric hindrances and expanding the range of targetable G4 structures.

Additionally, we explored the broader principles of G4 ligand design by focusing on dispersion forces and electrostatic interactions. Synthesising heterocyclic G4 ligands and studying their interactions with G4s showed that dispersion components in arene-arene interactions and electron-deficient electrostatics are central to achieving high-affinity binding and stabilisation. These findings enhance the GL-O approach by providing a framework to fine-tune the stabilisation effect of the GL-Os, potentially reducing off-target effects.

In parallel, we pursued a separate project that examined G4 structures within human mitochondrial DNA (mtDNA), aiming to elucidate their roles in cellular function. Human mtDNA contains regions that have been predicted to form G4 structures in silico. We mapped these mtDNA G4s using high-resolution techniques and demonstrated their formation in vivo. Stabilisation or replication stalling increases their formation, potentially contributing to mitochondrial dysfunction and genomic instability in disease. 

Together, these findings advance our understanding of G4 biology, from selective targeting strategies to the unique dynamics of mitochondrial G4s, offering valuable insights into the biological roles of G4s in maintaining genome stability and regulating cellular processes.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2025. , p. 45
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 2353
Keywords [en]
G-quadruplex, G4-Ligand, Selective targeting, Ligand design, mitochondrial DNA
National Category
Biochemistry Medical Biotechnology (Focus on Cell Biology, (incl. Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:umu:diva-237289ISBN: 978-91-8070-669-8 (print)ISBN: 978-91-8070-670-4 (electronic)OAI: oai:DiVA.org:umu-237289DiVA, id: diva2:1950373
Public defence
2025-05-09, Lilla Hörsalen (KBE301), KBC huset, Linnaeus väg 6, 90736, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2025-04-16 Created: 2025-04-07 Last updated: 2025-04-07Bibliographically approved
List of papers
1. G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures
Open this publication in new window or tab >>G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures
Show others...
2024 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 146, no 10, p. 6926-6935Article in journal (Refereed) Published
Abstract [en]

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:umu:diva-222294 (URN)10.1021/jacs.3c14408 (DOI)001179314400001 ()38430200 (PubMedID)2-s2.0-85186374110 (Scopus ID)
Funder
The Kempe Foundations, JCK-3159The Kempe Foundations, SMK-1632The Kempe Foundations, SMK21-0059Swedish Research Council, 2017-05235Swedish Research Council, 2021-04805Swedish Research Council, 2018-0278Cancerforskningsfonden i Norrland, AMP19-968Knut and Alice Wallenberg Foundation, SMK21-0059
Available from: 2024-03-20 Created: 2024-03-20 Last updated: 2025-04-07Bibliographically approved
2. Linker design principles for the precision targeting of oncogenic G-quadruplex DNA with G4-ligand-conjugated oligonucleotides
Open this publication in new window or tab >>Linker design principles for the precision targeting of oncogenic G-quadruplex DNA with G4-ligand-conjugated oligonucleotides
Show others...
2025 (English)In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812Article in journal (Refereed) Epub ahead of print
Abstract [en]

G-quadruplex (G4) DNA structures are noncanonical secondary structures found in key regulatory regions of the genome, including oncogenic promoters and telomeres. Small molecules, known as G4 ligands, capable of stabilizing G4s hold promise as chemical probes and therapeutic agents. Nevertheless, achieving precise specificity for individual G4 structures within the human genome remains a significant challenge. To address this, we expand upon G4-ligand-conjugated oligonucleotides (GL-Os), a modular platform combining the stabilizing properties of G4-ligands with the sequence specificity of guide DNA oligonucleotides. Central to this strategy is the linker that bridges the G4 ligand and the guide oligonucleotide. In this study, we develop multiple conjugation strategies for the GL-Os that enabled a systematic investigation of the linker in both chemical composition and length, enabling a thorough assessment of their impact on targeting oncogenic G4 DNA. Biophysical, biochemical, and computational evaluations revealed GL-Os with optimized linkers that exhibited enhanced binding to target G4s, even under thermal or structural stress. Notably, longer linkers broadened the range of targetable sequences without introducing steric hindrance, thereby enhancing the platform’s applicability across diverse genomic contexts. These findings establish GL-Os as a robust and versatile tool for the selective targeting of individual G4s. By facilitating precise investigations of G4 biology, this work provides a foundation for advancing G4-targeted therapeutic strategies and exploring their role in disease contexts.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2025
National Category
Biochemistry
Identifiers
urn:nbn:se:umu:diva-237287 (URN)10.1021/acs.bioconjchem.5c00008 (DOI)001448909600001 ()40112195 (PubMedID)2-s2.0-105000394779 (Scopus ID)
Funder
Swedish Research Council, VR-MH 2023-02160Swedish Research Council, VR-NT 2021-04805The Kempe Foundations, JCK-3159The Kempe Foundations, SMK21-0059Knut and Alice Wallenberg FoundationSwedish Cancer Society, 23 2793 PjSwedish Research Council, VR-MH 2023-02160Swedish Research Council, VR-NT 2021-04805The Kempe Foundations, JCK-3159The Kempe Foundations, SMK21-0059Knut and Alice Wallenberg FoundationSwedish Cancer Society, 23 2793 Pj
Available from: 2025-04-07 Created: 2025-04-07 Last updated: 2025-04-07
3. Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands
Open this publication in new window or tab >>Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands
Show others...
2024 (English)In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 67, no 3, p. 2202-2219Article in journal (Refereed) Published
Abstract [en]

G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
National Category
Medicinal Chemistry
Identifiers
urn:nbn:se:umu:diva-220319 (URN)10.1021/acs.jmedchem.3c02127 (DOI)001160609500001 ()38241609 (PubMedID)2-s2.0-85183093324 (Scopus ID)
Funder
The Kempe Foundations, JCK-3159The Kempe Foundations, SMK-1632Swedish Research Council, 2017-05235Swedish Research Council, 2021-04805Knut and Alice Wallenberg Foundation
Available from: 2024-02-13 Created: 2024-02-13 Last updated: 2025-04-24Bibliographically approved
4. Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells
Open this publication in new window or tab >>Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells
Show others...
2023 (English)In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 51, no 14, p. 7392-7408Article in journal (Refereed) Published
Abstract [en]

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.

Place, publisher, year, edition, pages
Oxford University Press, 2023
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-214069 (URN)10.1093/nar/gkad535 (DOI)001030190900001 ()37351621 (PubMedID)2-s2.0-85168980694 (Scopus ID)
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council, VR-MH 2018-0278Swedish Research Council, VR-NT 2017-05235The Kempe Foundations, SMK-1632Wenner-Gren FoundationsEU, Horizon 2020, 751474Swedish Foundation for Strategic Research, RIF14-0081
Available from: 2023-09-05 Created: 2023-09-05 Last updated: 2025-04-07Bibliographically approved

Open Access in DiVA

fulltext(1135 kB)36 downloads
File information
File name FULLTEXT01.pdfFile size 1135 kBChecksum SHA-512
ff0cfa4f28d288540dedd1272dd1eba2e36962a4c1774c2a54e09a4f1dcf600ea430125502addd7151b029d7a2284eaddb554c92c41b4266ac27fe2d29358dd9
Type fulltextMimetype application/pdf
spikblad(138 kB)29 downloads
File information
File name SPIKBLAD01.pdfFile size 138 kBChecksum SHA-512
b6696a137048dc72337f21303ef6947a420d503ba6bb6119aa770a883a283d7a17a54e27e2ec37131511851556666130cbfd4f2108d535b3936765e1cebcbb4b
Type spikbladMimetype application/pdf

Search in DiVA

By author/editor
Berner, Andreas
By organisation
Department of Medical Biochemistry and Biophysics
BiochemistryMedical Biotechnology (Focus on Cell Biology, (incl. Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar
Total: 38 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 747 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf