Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluating Machine Learning Models for Photovoltaic Power Forecasting - A Comparison of Models Trained on Observed and Forecasted Weather Data
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Utvärdering av maskininlärningsmodeller för prognostisering av solcellsenergi - En jämförelse av modeller tränade på observerade väderdata och väderprognosdata (Swedish)
Abstract [en]

Transitioning from fossil fuels to renewable energy presents a major challenge in modern society. However, to expand the use of photovoltaic (PV) power, better prediction accuracy is required. This thesis investigated the accuracy and uncertainty of machine learning models in forecasting the hourly PV power output two days in advance, based on weather data, for a solar park situated in central Sweden. Models developed using historical observed weather data were compared against those constructed with historical forecasted weather data. The findings indicated that models trained on historical forecast data outperformed models trained on historical observed training data. This trend was consistent across all machine learning models and feature sets evaluated. Random forests and extra trees were the best performing models and including solar angles as input features improved prediction accuracy. Furthermore, relatively reliable uncertainty estimates were achievable for models trained on historical forecasted weather data using quantile gradient boosting. The study also revealed that the weather conditions of a given day significantly influenced the accuracy and uncertainty of predictions, with days featuring snow being particularly challenging to forecast accurately.

Abstract [sv]

Övergången från fossila bränslen till förnybar energi är en av de stora utmaningarna i dagens samhälle. För att öka användningen av solenergi krävs dock en större förutsägbarhet. I denna uppsats utreddes noggrannheten och osäkerheten hos olika maskininlärningsmodeller som förutspår den timvisa solenergiproduktionen två dagar i förväg utifrån väderdata för en solpark belägen i centrala Sverige. Modeller konstruerade med historiska observerade väderdata jämfördes med modeller konstruerade med historiska väderprognosdata. Resultaten indikerade att modeller tränade på historiska väderprognosdata presterade bättre än de tränade på historiska observerade träningsdata. Detta resultat var konsekvent för alla maskininlärningsmodeller och variabeluppsättningar som undersöktes. De modeller som presterade bäst var random forests och extra trees. Inkludering av solvinklar som variabler förbättrade noggrannheten. Det var vidare möjligt att uppnå relativt tillförlitliga osäkerhetsuppskattningar för modeller tränade på historiska prognostiserade väderdata med hjälp av quantile gradient boosting. Studien visade också att väderförhållandena för en given dag hade en betydande inverkan på prognosernas noggrannhet och osäkerhet. Dagar med snö var särskilt utmanande att prognostisera korrekt.

Place, publisher, year, edition, pages
2024. , p. 77
Series
TRITA-SCI-GRU ; 2024:326
Keywords [en]
photovoltaic plant, power forecasting, machine learning, extra trees, Monte Carlo, quantile regression
Keywords [sv]
solcellspark, kraftprognos, maskininlärning, extra trees, Monte Carlo, kvantilregression
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-361496OAI: oai:DiVA.org:kth-361496DiVA, id: diva2:1946067
External cooperation
Flower Technologies
Subject / course
Mathematical Statistics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2025-03-20 Created: 2025-03-20 Last updated: 2025-03-20Bibliographically approved

Open Access in DiVA

fulltext(7258 kB)54 downloads
File information
File name FULLTEXT01.pdfFile size 7258 kBChecksum SHA-512
61a9193899b12740824aebc7f355316f750e1b5a60264216a414e8b2feed0c68d7203fefc1e6bbcd44146b69a8adf7ce6b3d66438611b3770bb642497562cbef
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 54 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 392 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf