Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Variational Bayesian estimation of dynamic covariance matrices using inverse Wishart processes
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
En bayesiansk variationsinferens-metod för skattning av dynamiska kovariansmatriser med inverterade Wishart-processer (Swedish)
Abstract [en]

We present a variational Bayesian approach to estimation of covariance matrices, which we apply on multivariate time series of financial returns. Following previous research, dynamic covariance is modeled as an inverse Wishart process constructed from independent and identically distributed centered Gaussian processes.This report details standard procedures for Gaussian process regression and prediction, alongside a review of theoretical and practical aspects of variational approximate inference. We implement a gradient-based black box variational scheme, and notably, ansatz a variational family of factorized Gaussians with kernel matrix covariance. Through experiments, we demonstrate that our proposed model is especially advantageous on shifting- and periodically correlating data, outperforming the benchmark exponential moving average in-period in terms of time-accuracy. While the framework for forecasting suffers from practical disadvantages and lacking precision on synthetic datasets, the results on financial data show modest promise.

Abstract [sv]

Vi introducerar en variationsinferens-baserad bayesiansk metod för skatting av kovariansmatriser, som vi tillämpar på tidsserier av finansiella dagsavkastningar. Mer specifikt modellerar vi dynamisk kovarians som en inverterad Wishart-process enligt tidigare forskning, i en konstruktion med oberoende likafördelade centrerade gaussiska processer. Rapporten innehåller en beskrving av standardmetoder för regression och prediktion med gaussiska processer, och en genomgång av teoretiska och praktiska aspekter av variationsinferens. Vi implementerar en gradientbaserad ``black box"-variationsmetod och föreslår särskilt en variations-familj bestående av faktoriserade normalfördelningar med Gram-kovarians. Experimentellt visar vi att den föreslagna modellen är särskilt fördelaktig vid skiftande och periodiskt korrelerande data, och överträffar vår benchmark, exponentiellt glidande medelvärde, i noggrannhet i tid. Emedan ramverket för prediktion har praktiska nackdelar och bristande precision på syntetiska dataset, visar resultaten på finansiell data blygsam potential.

Place, publisher, year, edition, pages
2024. , p. 46
Series
TRITA-SCI-GRU ; 2024:281
Keywords [en]
Bayesian inference, Variational inference, Wishart process, Gaussian process, Portfolio allocation, Dynamic covariance
Keywords [sv]
Bayesiansk inferens, Variationsinferens, Wishart-process, Gaussisk process, Portföljallokering, Dynamisk kovarians
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-361490OAI: oai:DiVA.org:kth-361490DiVA, id: diva2:1946051
External cooperation
Lynx Asset Management
Subject / course
Mathematical Statistics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2025-03-20 Created: 2025-03-20 Last updated: 2025-03-20Bibliographically approved

Open Access in DiVA

fulltext(1248 kB)59 downloads
File information
File name FULLTEXT01.pdfFile size 1248 kBChecksum SHA-512
01ede7243715e0606fa2e35596faaa6bace29f089cf8159e614952c5716dcba4e3c0e88df99d497c94713b4078e78b2c52272df7e58433f50a01078fafe1ead2
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 59 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 417 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf