Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Variant-specific interactions at the plasma membrane: heparan sulfate’s impact on SARS-CoV-2 binding kinetics
Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).ORCID iD: 0000-0003-0634-7091
Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
Show others and affiliations
2025 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 97, no 8, p. 4318-4328Article in journal (Refereed) Published
Abstract [en]

The spread of SARS-CoV-2 led to the emergence of several variants of concern (VOCs). The spike glycoprotein, responsible for engaging the viral receptor, exhibits the highest density of mutations, suggesting an ongoing evolution to optimize viral entry. This study characterizes the bond formed by virion mimics carrying the SARS-CoV-2 spike protein and the plasma membrane of host cells in the early stages of virus entry. Contrary to the traditional analysis of isolated ligand-receptor pairs, we utilized well-defined biomimetic models and biochemical and biophysical techniques to characterize the multivalent interaction of VOCs with the complex cell membrane. We observed an overall increase in the binding affinity for newer VOCs. By progressively reducing the system complexity, we identify heparan sulfate (HS) as a main driver of this variation, with a 10-fold increase in affinity for Omicron BA.1 over that of the original strain. These results demonstrate the essential role of coreceptors, particularly HS, in the modulation of SARS-CoV-2 infection and highlight the importance of multiscale biophysical and biochemical assays that account for membrane complexity to fully characterize and understand the role of molecular components and their synergy in viral attachment and entry.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2025. Vol. 97, no 8, p. 4318-4328
National Category
Medical Biotechnology (Focus on Cell Biology, (incl. Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:umu:diva-235998DOI: 10.1021/acs.analchem.4c04283ISI: 001426979700001PubMedID: 39976108Scopus ID: 2-s2.0-86000386504OAI: oai:DiVA.org:umu-235998DiVA, id: diva2:1945191
Funder
The Kempe FoundationsKnut and Alice Wallenberg FoundationSwedish Research Council, 2017-04029Swedish Research Council, 2020-06242EU, Horizon 2020, 101027987Available from: 2025-03-18 Created: 2025-03-18 Last updated: 2025-03-28Bibliographically approved

Open Access in DiVA

fulltext(3137 kB)42 downloads
File information
File name FULLTEXT01.pdfFile size 3137 kBChecksum SHA-512
145e20316cb6e76702eeb59cacfcdc59b30aa7560070373b2257d902c5bac1c74c1821860582b9f2505c40d65b4250ec2a262a82e59b8525c49c2af94f2d8e4e
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Conca, Dario ValterBano, FouziaGraul, Małgorzatavon Wirén, JuliusScherrer, LaurianePace, HudsonSharma, HimanshuThorsteinsson, KonradBally, Marta
By organisation
Department of Clinical MicrobiologyWallenberg Centre for Molecular Medicine at Umeå University (WCMM)Umeå Centre for Microbial Research (UCMR)Department of Medical Biochemistry and BiophysicsMolecular Infection Medicine Sweden (MIMS)
In the same journal
Analytical Chemistry
Medical Biotechnology (Focus on Cell Biology, (incl. Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar
Total: 43 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 287 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf